DOI QR코드

DOI QR Code

Synthesis and Electrolyte Characterization of 1-Benzyl-3-butylimidazolium Hydroxide Ionic Liquid

1-Benzyl-3-butylimidazolium Hydroxide 이온성액체 합성 및 전해질 특성 조사

  • Salman, Muhammad (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • 무함마드 살만 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Received : 2020.09.09
  • Accepted : 2020.10.08
  • Published : 2020.12.10

Abstract

A hydrophilic alkaline room temperature ionic liquid electrolyte (RT-IL) carrying hydroxide ion as an anion and 1-benzyl-3-butylimidazolium as a cation was synthesized. Electrochemical, physical and structural properties of the synthesized RT-IL were characterized using cyclic voltammetry, ionic conductivity, viscosity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR, and 1H-NMR measurements. High ionic conductivity and low viscosity characteristics comparable to 0.1 M KCl electrolyte solution were achieved for the RT-IL in addition to a wide electrochemical potential window of about 4.4 V. The results indicate that the RT-IL is promising for future applications as an alternative electrolyte to energy and environmental research fields.

본 논문에서는 수산화기를 음이온으로 이미다졸리움, 즉 1-benzyl-3-butylimidazolium [BzBIM]을 양이온으로 구성한 친수성의 알칼라인 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체의 전기화학적, 물리적 및 구조적 특성을 순환전압전류법, 이온전도도, 점도, 열중량분석기, 시차 주사 열량 측정법, FT-IR과 1H-NMR을 이용하여 측정하였다. 합성된 이온성 액체는 0.1 M KCl 전해질과 유사한 높은 이온전도도와 낮은 점도를 나타내었으며, 또한 약 4.4 V 이상의 전위창을 나타내었다. 따라서 상기 이온성 액체는 대체 전해질로 다양한 에너지 및 환경 응용분야에 활용될 수 있을 것으로 전망된다.

Keywords

References

  1. D. Weingarth, I. Czekaj, Z. Fei, A. F. Schmitz, P. J. Dyson, A. Wokaun, and R. Kotz, Electrochemical stability of imidazolium based Ionic liquids containing cyano groups in the anion a cyclic voltammetry, XPS and DFT study, J. Electrochem. Soc., 7, H611-H615 (2012).
  2. F. Bidault, D. J. L. Brett, P. H. Middleton, and N. P. Brandon, Review of gas diffusion cathodes for alkaline fuel cells, J. Power Sources, 187, 39-48 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.106
  3. C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, Why is CO2 so soluble in imidazolium-based ionic liquids?, J. Am. Chem. Soc., 126, 5300-5308 (2004). https://doi.org/10.1021/ja039615x
  4. E. D. Bates, R. D. Mayton, I. Ntai, and J. H. Davis Jr, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc., 124, 926-927 (2002). https://doi.org/10.1021/ja017593d
  5. I. J. Kim, K. S. Kim, and J. H. Lee, Ionic liquid crystal electrolytes based on ether functionalized ionic liquid for lithium batteries, Appl. Chem. Eng., 31, 305-309 (2020). https://doi.org/10.14478/ACE.2020.1033
  6. Q. Li, Q. Li, G. Li, W. Zhao, X. Zhao, and T. Mu, The electrochemical stability of ionic liquids and deep eutectic solvents, Sci. China Chem., 59, 571-577 (2016). https://doi.org/10.1007/s11426-016-5566-3
  7. H. Lee, J. S. Lee, and H. S. Kim, Applications of ionic liquids: The state of art, Appl. Chem. Eng., 21, 129-136 (2010).
  8. C. Chen, A functionalised ionic liquid: 1-(3-chloro-2-hydroxypropyl)-3-methyl imidazolium chloride, Phys. Chem. Liq., 48, 298-306 (2010). https://doi.org/10.1080/00319100902822745
  9. M. Galinski, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 51,5 567-5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  10. C. S. Kim, and K.S.Yoo, Influence of the cation parts of imidazolium hexafluorophosphate on synthesis of Pd/C particles as a HFP hydrogenation catalyst, Appl. Chem. Eng., 25, 249-253 (2014). https://doi.org/10.14478/ace.2014.1004
  11. H. Nakagawa, Y. Fujino, S. Kozono, Y. Katayama, T. Nukuda, H. Sakaebe, H. Matsumoto, and K. Tatsumi, Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells, J. Power Sources, 174, 1021-1026 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.133
  12. C. S. Kim, B. S. Ahn, H. Tae, S. H. Jeon, and K. S. Yoo, Efffect of the cation part of imidazolium ionic liquids on the synthesis of palladium particle, Appl. Chem. Eng., 23, 510-513 (2012).
  13. C. Wang, H.Luo, X. Luo, H. Li, and S. Dai, Equimolar CO2 capture by imidazolium-based ionic liquids and superbase systems, Green Chem., 12, 2019-2023 (2010). https://doi.org/10.1039/c0gc00070a
  14. S. Han, M. Luo, X. Zhou, Z. He, and L. Xiong, Synthesis of dipentyl carbonate by transesterification using basic ionic liquid [bmIm]OH catalyst, Ind. Eng. Chem. Res., 51, 5433-5437 (2012). https://doi.org/10.1021/ie202628m
  15. H. L. Ngo, K. Le Compte, L. Hargens, and A. B. McEwen, Thermal properties of imidazolium ionic liquids, Thermochim. Acta, 357, 97-102 (2000). https://doi.org/10.1016/S0040-6031(00)00373-7
  16. J. R. Jaganathan, M. Sivapragasm, and C. D. Wilfred, Thermal characteristics of 1-Butyl-3-methylimimidazolium based oxidant lonic liquids, J. Chem. Eng. Process Technol., 07, 1-6 (2016).
  17. Z. Tshemese, S. C. Masikana, S. Mlowe, and N. Revaprasadu. In Recent Advances in Ionic Liquids, 71-88 (2018).
  18. Y. C. Wu, W. F. Koch, and K. W. Pratt, Proposed new electrolytic conductivity primary standards for KCl solutions, J. Res. Natl. Inst. Stand. Technol., 96, 191-201 (1991). https://doi.org/10.6028/jres.096.008
  19. J. Kestin, I. R. Shankland, and R. Paul, The viscosity of aqueous KCI solutions in the temperature range 25-200 ℃ and the pressure range 0.1-30 MPa, Int. J. Thermophys., 2, 301-314 (1981). https://doi.org/10.1007/BF00498761
  20. L. W. Jing, H. B. Xing, Z. Z. Fu, T. R. Ting, and Z. J. Ling, Measurement and correlation of the ionic conductivity of ionic liquid-molecular solvent solutions, Chin. J. Chem., 25, 1349-1356 (2007). https://doi.org/10.1002/cjoc.200790251