DOI QR코드

DOI QR Code

Measurement of the Coating Temperature Evolution during Atmospheric Plasma Spraying

대기압 플라즈마 용사 공정에서의 기판 코팅 온도 영향 연구

  • Lee, Kiyoung (Department of Advanced Science and Technology Convergence, Kyungpook National University) ;
  • Oh, Hyunchul (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology (GNTECH))
  • 이기영 (경북대학교 미래과학기술융합학과) ;
  • 오현철 (경남과학기술대학교 에너지공학과 미래융복합연구소)
  • Received : 2020.09.04
  • Accepted : 2020.10.20
  • Published : 2020.12.10

Abstract

For more effective temperature control of atmospheric plasma sprayed (APS) zirconia thermal barrier coating, understanding of the parameters, which influence the substrate temperature, is essential and also more numerical results based on the experimental data are required. This study aims to investigate the substrate temperature control during an APS process. The APS process deals with air-cooled systems, plasma-gas flow, powder feed rate, robot velocity, and substrate effect on the substrate surface temperature control during the process. This systematic approach will help to handle the temperature control, and thus lead to better coating quality.

대기 플라즈마 용사(APS)법을 이용한 지르코니아 열차폐 코팅의 보다 효과적인 온도 제어를 위해서는 기판 온도에 영향을 미치는 매개 변수에 대한 이해가 필수적이며 실험 데이터를 기반으로 한 더 많은 결과가 필요하다. 본 연구는 APS (atmospheric plasma sprayed) 공정에서 기판 온도 제어에 관한 연구를 목적으로 한다. 특히, APS 기판 코팅과정에서 기판 표면 온도 제어를 위한 공랭 시스템, 플라즈마 가스 흐름, 분말 공급 속도, 로봇 속도 및 기판소재 영향 등을 보고하고 있다. 이러한 체계적인 접근은 APS 방식의 표면 코딩에서 온도를 제어하는데 도움이 되며, 이는 코팅 품질의 향상으로 이어질 것이다.

Keywords

References

  1. E. Pfender, Thermal plasma technology: Where do we stand and where are we going?, Plasma Chem. Plasma Proc., 19, 1-31 (1999) https://doi.org/10.1023/A:1021899731587
  2. A. Vardelle, C. Moreau, J. Akedo, H. Ashrafizadeh, C. C. Berndt, J. O. Berghaus, M. Boulos, J. Brogan, A. C. Bourtsalas, A. Dolatabadi, and M. Dorfman, Thermal spray roadmap, J. Therm. Spray Technol., 25, 1376-1440 (2016). https://doi.org/10.1007/s11666-016-0473-x
  3. R. C. Tucker, Thermal Spray Technology, 1st (Ed.), ASM Handbook, Volume 5A, OH, USA (2013).
  4. L. Xie, D. Chen, E. H. Jordan, A. Ozturk, F. Wu, X. Ma, B. M. Cetegen, and M. Gell, Formation of vertical cracks in solution-precursor plasma-sprayed thermal barrier coatings, Surf. Coat. Technol., 201, 1058-1064 (2006). https://doi.org/10.1016/j.surfcoat.2006.01.020
  5. S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskia, and U. Kortshagen, The 2012 plasma roadmap, J. Phys. D Appl. Phys., 45, 253001 (2012). https://doi.org/10.1088/0022-3727/45/25/253001
  6. P. Fauchais, G. Montavon, M. Vardelle, and J. Cedelle, Developments in direct current plasma spraying, Surf. Coat. Technol., 201, 1908-1921 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.033
  7. Fr.-W. Bach, A. Laarmann, and T. Wenz, Triplex II - Development of an economical high-performance plasma spray system for highest-quality demands even under challenging production xonditions, In: H. Zimmermann and H.-M. Hohle (eds.). Modern Surf. Tech., 159-178 Wiley-VCH Verlag GmbH & Co. KGaA, Germany (2006).
  8. G. Mauer, M. O. Jarligo, D. Marcano, S. Rezanka, D. Zhou, and R. VaBen, Recent developments in plasma spray processes for applications in energy technology, IOP Conf. Series: Materials Sci. Eng., 181, 012001 (2017). https://doi.org/10.1088/1757-899X/181/1/012001
  9. L. Zhao, K. Seemann, A. Fischer, and E. Lugscheider, Study on atmospheric plasma spraying of Al2O3 using on-line particle monitoring, Surf. Coat. Technol., 168, 186-190 (2003). https://doi.org/10.1016/S0257-8972(03)00201-9
  10. D. Thirumalaikumarasamy, K. Shanmugam, V. Balasubramanian, Influences of atmospheric plasma spraying parameters on the porosity level of alumina coating on AZ31B magnesium alloy using response surface methodology, Prog. Natural Sci.: Materials Int., 22, 468-479 (2012). https://doi.org/10.1016/j.pnsc.2012.09.004
  11. D. Thirumalaikumarasamy, K. Shanmugam, and V. Balasubramanian, Comparison of the corrosion behaviour of AZ31B magnesium alloy under immersion test and potentiodynamic polarization test in NaCl solution, J. Magnesium Alloys, 2, 140-153 (2014). https://doi.org/10.1016/j.jma.2014.05.002
  12. F. Azarmi, T. W. Coyle, and J. Mostaghimi, Optimization of atmospheric plasma spray process parameters using a design of experiment for alloy 625 coatings, J. Thermal Spray Technol., 17, 144-155 (2008). https://doi.org/10.1007/s11666-007-9142-4
  13. M. Bounazef, S. Guessasma, G. Montavon, and C. Coddet, Effect of APS process parameters on wear behaviour of alumina-titania coatings, Mater. Lett., 58, 2451-2455 (2004). https://doi.org/10.1016/j.matlet.2004.02.026
  14. R. Soltani, M. Heydarzadeh-Sohi, M. Ansari, F. Afsari, and Z. Valefi, Effect of APS process parameters on high-temperature wear behavior of nickel-graphite abradable seal coatings, Surf. Coat. Technol., 321, 403-408 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.004
  15. H. Waki, T. Kitamura, and A. Kobayashi, Effect of thermal treatment on high-temperature mechanical properties enhancement in LPPS, HVOF, and APS CoNiCrAlY coatings, J. Therm. Spray Technol., 18, 500 (2009). https://doi.org/10.1007/s11666-009-9402-6
  16. A. Rico, J. Rodriguez, and E. Otero, High temperature oxidation behaviour of nanostructured alumina-titania APS coatings, Oxid. Met., 73, 531-550 (2010). https://doi.org/10.1007/s11085-010-9191-9
  17. E. Lugscheider, C. Barimani, P. Eckert, and U. Eritt, Modeling of the APS plasma spray process, Comput. Mater. Sci., 7, 109-114 (1996). https://doi.org/10.1016/S0927-0256(96)00068-7
  18. D. Tejero-Martin, M. Rezvani Rad, A. McDonald, and T. Hussain, Beyond traditional coatings: A review on thermal-sprayed functional and smart coatings, J. Thermal Spray Technol., 28, 598-644 (2019). https://doi.org/10.1007/s11666-019-00857-1