DOI QR코드

DOI QR Code

Synthesis of Cobalt Hydroxide Nanosheets based on Sonication-induced Exfoliation for Depolymerization of Polyethylene Terephthalate

폴리에틸렌 테레프탈레이트의 해중합을 위한 초음파 박리법 기반의 코발트 수산화물 나노시트의 제조

  • Jin, Se Bin (Department of Chemical Engineering, Kangwon National University) ;
  • Son, Seon Gyu (Department of Chemical Engineering, Kangwon National University) ;
  • Jeong, Jae-Min (Department of Nanoengineering, University of California San Diego) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 진세빈 (강원대학교 화학공학과) ;
  • 손선규 (강원대학교 화학공학과) ;
  • 정재민 (캘리포니아대학 샌디에고 캠퍼스 나노공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2020.10.27
  • Accepted : 2020.11.17
  • Published : 2020.12.10

Abstract

In this work, ultrathin and two-dimensional (2D) cobalt hydroxide [Co(OH)2] nanosheets were synthesized by a sonication assisted liquid-phase exfoliation of bulk Co(OH)2. The resulting exfoliated Co(OH)2 is a hexagonal mono-layered nanosheet with a high specific surface area of 27.5 ㎡ g-1. The depolymerization of polyethylene terephthalate (PET) based on glycolysis reaction was also performed using an exfoliated Co(OH)2 catalyst. Excellent catalytic reaction performances were demonstrated; a high PET conversion and bis(2-hydroxyethyl) terephthalate (BHET) yield of both 100% using the nanosheet catalyst were achieved within a reaction time and temperature of 30 min and 200 ℃, respectively. The long-term stability of exfoliated Co(OH)2 catalysts was also demonstrated by recyclability tests of the catalyzed glycolysis reaction of PET over four cycles, showing both 100% of high PET conversion and BHET yield.

본 논문에서는 수산화코발트[Co(OH)2] 층간 소재를 초음파(sonication) 액상 박리 공정을 사용하여 얇은 2차원 나노시트(nanosheet)로 박리하였다. 상기의 Co(OH)2 촉매는 27.5 ㎡ g-1의 넓은 비표면적을 갖는 한 장의 육각 나노시트로 박리 되었다. 또한, 특성 분석 및 PET 해중합(depolymerization) 반응의 촉매로서 사용되어 고활성을 증명하였다. 해당 촉매를 사용한 PET 해중합 반응은 200 ℃에서 30 min 이내에 100%의 높은 PET전환율과 100%의 높은 BHET 수율을 보여주었다. 박리된 Co(OH)2의 재사용성을 확인하기 위해 반응 후 필터를 사용해 촉매를 회수하여 PET 해중합 반응을 진행하였다. 총 4번의 재사용 동안 100%의 PET 전환율과 100%의 BHET 수율을 보여주어 촉매의 우수한 안정성을 증명하였다.

Keywords

References

  1. Plastic Insight, https://www.plasticsinsight.com/resin-intelligence/resin-prices/polyethylene-terephthalate/.
  2. A. Rahimi and J. M. Garcia, Chemical recycling of waste plastics for new materials production, Nat. Rev. Chem., 1, 46-56 (2017). https://doi.org/10.1038/s41570-017-0046
  3. X. Zhang, M. Fevre, G. O. Jones, and R. M. Waymouth, Catalysis as an enabling science for sustainable polymers, Chem. Rev., 118, 839-885 (2018). https://doi.org/10.1021/acs.chemrev.7b00329
  4. H. K. Webb, J. Arnott, R. J. Crawford, and E. P. Ivanova, Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate), Polymers, 5, 1-18 (2013). https://doi.org/10.3390/polym5010001
  5. V. Tournier, C. M. Topham, A. Gilles, B. David, C. Folgoas, E. Moya-Leclair, E. Kamionka, M.-L. Desrousseaux, H. Texier, S. Gavalda, M. Cot, E. Guemard, M. Dalibey, J. Nomme, G. Cioci, S. Barbe, M. Chateau, I. Andre, S. Duquesne, and A. Marty, An engineered PET depolymerase to break down and recycle plastic bottles, Nature, 580, 216-220 (2020). https://doi.org/10.1038/s41586-020-2149-4
  6. A. B. Raheem, Z. Z. Noor, A. Hassan, M. K. A. Hamid, S. A. Samsudin, and A. H. Sabeen. Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review, J. Clean. Prod., 225, 1052-1064 (2019). https://doi.org/10.1016/j.jclepro.2019.04.019
  7. F. Awaja and D. Pavel, Recycling of PET, Eur. Poly. J., 41, 1453-1477 (2005). https://doi.org/10.1016/j.eurpolymj.2005.02.005
  8. D. Carta, G. Cao, and C. D, Angeli, Chemical recycling of poly (ethylene terephthalate) (PET) by hydrolysis and glycolysis, Environ. Sci. Pollut. Res., 10, 390-394 (2003). https://doi.org/10.1065/espr2001.12.104.8
  9. M. Khoonkari, A. H. Haghighi, Y. Sefidbakht, K. Shekoohi, and A. Ghaderian, Chemical recycling of PET wastes with different catalysts, Int. J. Polym. Sci., 11, 1-11 (2005).
  10. C. H. Chen, C. Y. Chen, Y. W. Lo, C. F. Mao, and W. T. Liao, Studies of glycolysis of poly(ethylene terephthalate) recycled from postconsumer soft‐drink bottles. I. Influences of glycolysis conditions, J. Appl. Polym. Sci., 5, 943-948 (2001).
  11. G. R. Lima, W, F, Monteiro, R. Ligabue, and R. M. C. Santana, Titanate nanotubes as new nanostrutured catalyst for depolymerization of PET by glycolysis reaction, Mater. Res., 20, 588-595 (2017). https://doi.org/10.1590/1980-5373-mr-2017-0645
  12. M. Imran. D. H. Kim, W. A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, and S. M. Ramay, Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis, Polym. Degrad. Stab., 1, 904-915 (2013).
  13. M. Ghaemy and K. Mossaddegh, Depolymerisation of poly(ethylene terephthalate) fibre wastes using ethylene glycol, Polym. Degrad. Stab., 90, 570-576 (2005). https://doi.org/10.1016/j.polymdegradstab.2005.03.011
  14. K. Troev, G. Grancharov, R. Tsevi, and I. Gitsov, A novel catalyst for the glycolysis of poly(ethylene terephthalate), J. Appl. Polym. Sci., 90, 1148-1152 (2013). https://doi.org/10.1002/app.12711
  15. M. Zhu, Z. Li, Q. Wang, X. Zhou, and X. Lu, Characterization of solid acid catalysts and their reactivity in the glycolysis of poly (ethylene terephthalate), Ind. Eng. Chem. Res., 51, 11659-11666 (2012). https://doi.org/10.1021/ie300493w
  16. J. M. Thomas and R. Raja, The advantages and future potential of single-site heterogeneous catalysts, Top. Catal., 40, 1-4 (2006). https://doi.org/10.1007/s11244-006-0087-5
  17. H. Hwang, B. Kim, D. Woo, and M. Han, Depolymerization of PET by Ethylene Glycol, Korean Chem. Eng. Res., 47, 683-687 (2009).
  18. M. R. Nabid, Y. Bide, N. Fereidouni, and B. Etemadi, Maghemite/nitrogen-doped graphene hybrid material as a reusable bifunctional catalyst for glycolysis of polyethylene terephthalate, Polym. Degrad. Stab., 144, 434-441 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.08.033
  19. S. Ugduler, K. V. Geem, R. Denolf, M. Roosen, N. Mys, K. Ragaert, and S. D. Meester, Towards closed-loop recycling of multilayer and coloured PET plastic waste by alkaline hydrolysis, Green Chem., 22, 5376-5394 (2020). https://doi.org/10.1039/D0GC00894J
  20. P. Jash, P. Srivastava, and A. Paul, Selective synthesis of single layer translucent cobalt hydroxide for efficient oxygen evolution reaction, Chem. Commun., 55, 2230-2233 (2019). https://doi.org/10.1039/C8CC10120E
  21. Y. Surendranath, M. W. Kanan, and D. C. Nocera, Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH, J. Am. Chem. Soc., 132, 16501-16509 (2010). https://doi.org/10.1021/ja106102b
  22. H. Cui, Y. Zhao, W. Ren, M. Wang, and Y. Liu, Large scale selective synthesis of α-Co(OH)2 and β-Co(OH)2 nanosheets through a fluoride ions mediated phase transformation process, J. Alloys Compd., 562, 33-37 (2013). https://doi.org/10.1016/j.jallcom.2013.02.031
  23. Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai, Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges, Nanomaterials, 8, 942 (2018). https://doi.org/10.3390/nano8110942
  24. A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, and M. Shanbedi, A review on liquid-phase exfoliation for scalable production of puregraphene, wrinkled, crumpled and functionalized graphene and challenge, Flatchem, 8, 40-71 (2018). https://doi.org/10.1016/j.flatc.2018.03.004
  25. A. Yang, D. Wang, X. Wanga, D. Zhang, N. Koratkar, and M. Rong, Recent advances in phosphorene as a sensing material, Nano Today, 20, 12-32 (2018).
  26. X. Zhang, A. C. Coleman, N. Katsonis, W. R. Browne, B. J. van Wees, and B. L. Fering, Dispersion of graphene in ethanol using a simple solvent exchange method, Chem. Commun., 46, 7539-7541 (2010). https://doi.org/10.1039/c0cc02688c
  27. J. T. Sampanthar and H. C. Zeng, Arresting butterfly-like intermediate nanocrystals of β-Co(OH)2 via ethylenediamine-mediated synthesis, J. Am. Chem. Soc., 124, 6668-6675 (2002). https://doi.org/10.1021/ja012595j
  28. T. Zhou, Z. Cao, H. Wang, Z. Gao, L. Li, H. Mab, and Y. Zhao, Ultrathin Co-Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting, RSC Adv., 7, 22818-22824 (2017). https://doi.org/10.1039/C7RA01202K