DOI QR코드

DOI QR Code

Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8 Modified with Amine

Amine으로 개질된 ZIF-8을 함유한 PEBAX-PEI 복합막의 기체투과 특성

  • Yi, Eun Sun (Department of Chemical Engineering and Materials Science, Sangmyung University) ;
  • Hong, Se Ryeong (Kyedang College of General Educations, Sangmyung University)
  • 이은선 (상명대학교 화공신소재학과) ;
  • 홍세령 (상명대학교 계당교양교육원)
  • Received : 2020.09.24
  • Accepted : 2020.11.23
  • Published : 2020.12.10

Abstract

In this study, poly(ether-block-amide) (PEBAX)/zeolitic imidazolate framework-8 (ZIF-8)-polyetherimide (PEI), and PEBAX/amine-modified ZIF-8 (amineZIF-8)-PEI composite membranes were prepared by varying the contents of ZIF-8 and amineZIF-8. Also the gas permeability properties of N2 and CO2 were investigated for each composite membrane. The N2 and CO2 permeability of the PEBAX/ZIF-8-PEI composite membrane increased as the ZIF-8 content increased, while the CO2/N2 selectivity gradually decreased. In the case of the PEBAX/amineZIF-8-PEI composite membrane, the permeability of N2 decreased slightly, and CO2 increased till amineZIF-8 amount was 0.5 wt% and then decreased when the content increased further. The CO2/N2 selectivity was the highest with a value of 78.3 at 0.5 wt% of amineZIF-8. because the amine modification in the amineZIF-8 improves the compatibility between PEBAX and amineZIF-8, It seems that amineZIF-8 was evenly dispersed in PEBAX, which could be greatly influenced by the porousity of ZIF-8 and also the affinity of amine toward CO2.

본 연구에서는 ZIF-8과 amine으로 개질된 ZIF-8 (amineZIF-8) 함량에 따른 PEBAX/ZIF-8-PEI, PEBAX/amineZIF-8-PEI 복합막을 제조하고, 각 복합막에 대해 N2와 CO2의 기체투과 성질을 조사하였다. PEBAX/ZIF-8-PEI 복합막의 N2와 CO2 투과도는 ZIF-8 함량이 증가할수록 증가하였고, CO2/N2 선택도는 점차 감소하였다. PEBAX/amineZIF-8-PEI 복합막의 경우 N2의 투과도는 소폭 감소하였고, CO2는 amineZIF-8 0.5 wt%까지 증가하다가 그 이후의 함량에서는 감소하였으며 CO2/N2 선택도는 amineZIF-8 0.5 wt%에서 78.3으로 가장 높은 선택도를 보였다. AmineZIF-8 0.5 wt%에서 CO2/N2 선택도가 가장 높은 이유는 amine 개질로 인해 PEBAX와 amineZIF-8 사이에서 서로 간의 호환성을 향상시켰고, amineZIF-8이 PEBAX 내에 고르게 분산되면서 다공성의 ZIF-8 효과와 CO2에 친화성이 있는 amine의 효과를 가장 크게 받았기 때문으로 보인다.

Keywords

References

  1. L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol., 78, 76-82 (2011). https://doi.org/10.1016/j.seppur.2011.01.024
  2. F. H. Akhtar, M. Kumar, and K. V. Peinemann, Pebax 1657/graphene oxide composite membranes for improved water vapor separation, J. Membr. Sci., 525, 187-194 (2017). https://doi.org/10.1016/j.memsci.2016.10.045
  3. H. J. Kim, Gas permeation properties of carbon dioxide and methane for/TEOS hybrid membranes, Korean Chem. Eng. Res., 49(4), 460-464 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  4. K. Zarshenas, A. Raisi, and A. Aroujalian, Mixed matrix membranes of nano-zeolite NaX/poly(ether-block-amide) for gas separation applications, J. Membr. Sci., 510, 270-283 (2016). https://doi.org/10.1016/j.memsci.2016.02.059
  5. R. S. Muralia, A. F. Ismailb, M. A. Rahmanb, and S. Sridhara, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014). https://doi.org/10.1016/j.seppur.2014.03.017
  6. V. M. A. Melgar, J. Kim, and M. R. Othman, Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance, J. Ind. Eng. Chem., 28, 1-15 (2015). https://doi.org/10.1016/j.jiec.2015.03.006
  7. S. Sridhar, R. Suryamurali, B. Smitha, and T. M. Aminabhavi, Development of crosslinked poly(ether-block-amide) membrane for CO2/CH4 separation, Colloids Surf. A, 297, 267-274 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.054
  8. V. Bondar, B. D. Freeman, and I. Pinnau, Gas transport properties of poly(ether-b-amide) segmented block copolymers, J. Polym. Sci. B Polym. Phys., 38, 2051-2062 (2000). https://doi.org/10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D
  9. A. Car, C. Stropnik, W. Yave, and K. Peinemann, Pebax/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases, Sep. Purif. Technol., 62, 110-117 (2008). https://doi.org/10.1016/j.seppur.2008.01.001
  10. H. Kim, C. Lim, and S. Hong, Gas permeation properties of organic-inorganic hybrid membranes prepared from hydroxyl terminated polyether and 3-isocyanatopropyltriethoxysilane, J. Sol-Gel Sci. Technol., 36, 213-221 (2005). https://doi.org/10.1007/s10971-005-3782-y
  11. H. B. Kim, M. W. Lee, W. K. Park, S. J. Lee, H. K. Lee, and S. H. Lee, Permeation properties of single gases (N2, O2, SF6, CF4) through PDMS and PEBAX membranes, Membr. J., 22, 201-207 (2012).
  12. C. H. Hyung, C. D. Park, K. H. Kim, J. W. Rhim, T. S. Hwang, and H. K. Lee, A study on the SO2/CO2/N2 mixed gas separation using Polyetherimide/PEBAX/PEG composite hollow fiber membrane, Membr. J., 22, 404-414 (2012).
  13. K. Kim, S. Park, W. So, D. Ahn, and S. Moon, CO2 separation performances of composite membranes of 6FDA-based polyimides with a polar group, J. Membr. Sci., 211, 41-49 (2003). https://doi.org/10.1016/S0376-7388(02)00316-2
  14. H. Cong, M. Radosz, B. F. Towler, and Y. Shen, Polymer-inorganic nanocomposite membranes for gas separation, Sep. Purif. Technol., 55, 281-291 (2007). https://doi.org/10.1016/j.seppur.2006.12.017
  15. H. J. Kim, Gas permeation properties of carbon dioxide and methane for PEBAXTM/TEOS hybrid membranes, Korean Chem. Eng. Res., 49, 460-464 (2011). https://doi.org/10.9713/kcer.2011.49.4.460
  16. Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, and G. Wilkes, Poly(amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization, J. Membr. Sci., 135, 65-79 (1997). https://doi.org/10.1016/S0376-7388(97)00120-8
  17. H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
  18. K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe, and O. M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. U.S.A., 103, 10186-10191 (2006). https://doi.org/10.1073/pnas.0602439103
  19. X. Gong, Y. Wang, and T. Kuang, ZIF-8-based membranes for carbon dioxide capture and separation, ACS Sustainable Chem. Eng., 5, 11204-11214 (2017). https://doi.org/10.1021/acssuschemeng.7b03613
  20. H. Hayashi, A. P. Cote, H. Furukawa, M. O'Keeffe, and O. M. Yaghi, Zeolite A imidazolate frameworks, Nat. Mater., 6, 501-506 (2007). https://doi.org/10.1038/nmat1927
  21. P. D. Sutrisna, J. Hou, H. Li, Y. Zhang, and V. Chen, Improved operational stability of Pebax-based gas separation membranes with ZIF-8: A comparative study of flat sheet and composite hollow fiber membranes, J. Membr. Sci., 524, 266-279 (2017). https://doi.org/10.1016/j.memsci.2016.11.048
  22. A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari, CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane, J. Nat. Gas Sci. Eng., 31, 562 (2016). https://doi.org/10.1016/j.jngse.2016.03.067
  23. S. Couck, J. F. M. Denayer, G. V. Baron, T. Remy, J. Gascon, and F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc., 131, 6326-6327 (2009). https://doi.org/10.1021/ja900555r
  24. I. U. Khan, M. H. D. Othman, A. Jilani, A. F. Ismail, H. Hashim, J. Jaafa, M. A. Rahman, and G. U. Rehman, Economical, environmental friendly synthesis, characterization for the production of zeolitic imidazolate framework-8 (ZIF-8) nanoparticles with enhanced CO2 adsorption, Arab. J. Chem., 11, 1072-1083 (2018). https://doi.org/10.1016/j.arabjc.2018.07.012
  25. K. Y. Cho, H. An, X. H. Do, K. Choi, H. G. Yoon, H. -K. Jeong, J. S. Lee, and K. -Y. Baek, Synthesis of amine-functionalized ZIF-8 with 3-amino-1,2,4-triazole by postsynthetic modification for efficient CO2-selective adsorbents and beyond, J. Mater. Chem. A, 6, 18912-18919 (2018). https://doi.org/10.1039/C8TA02797H
  26. R. Ding, W. Zheng, K. Yang, Y. Dai, X. Ruan, X. Yan, and G. He, Amino-functional ZIF-8 nanocrystals by microemulsion based mixed linker strategy and the enhanced CO2/N2 separation, Sep. Purif. Technol., 236, 1-11 (2020).
  27. F. Martinez, R. Sanz, G. Orcajo, D. Briones, and V. Yanguez, Amino-impregnated MOF materials for CO2 capture at post-combustion conditions, Chem. Eng. Sci., 142, 55-61 (2016). https://doi.org/10.1016/j.ces.2015.11.033
  28. N. A. H. M. Nordin, S. M. Racha, T. Matsuura, N. Misdan, N. A. A. Sani, A. F. Ismail, and A. Mustafa, Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation, RSC Adv., 5, 43110-43120 (2015). https://doi.org/10.1039/C5RA02230D
  29. W. J. Ward III, W. R. Browall, and R. M. Salemme, Ultrathin silicone/polycarbonate membranes for gas separation processes, J. Membr. Sci., 1, 99-108 (1976). https://doi.org/10.1016/S0376-7388(00)82259-0
  30. L. Liu, A. Chakma, and X. Feng, A novel method of preparing ultrathin poly(ether block amide) membranes, J. Membr. Sci., 235, 43-52 (2004). https://doi.org/10.1016/j.memsci.2003.12.025
  31. N. A. H. M. Nordin, A. F. Ismail, A. Mustafa, P. S. Goh, D. Rana, and T. Matsuura, Aqueous room temperature synthesis of zeolitic imidazole framework 8 (ZIF-8) with various concetrations of triethylamine, RSC Adv., 4, 33292-33300 (2014). https://doi.org/10.1039/C4RA03593C
  32. Z. Zhang, S. Xian, Q. Xia, H. Wang, Z. Li, and J. Li, Enhancement of CO2 adsorption CO2/N2 selectivity on ZIF-8 via postsynthetic modification, AlChE J., 59(6), 2195-2204 (2013). https://doi.org/10.1002/aic.13970
  33. Y. Wang, Y. Ren, H. Wu, X. Wu, H. Yang, L. Yang, X. Wang, Y. Wu, Y. Liu, and Z. Jiang, Amino-functionalized ZIF-7 embedded polymers of intrinsic microporosity membrane with enhanced selectivity for biogas upgrading, J. Membr. Sci., 602, 117970-117982 (2020). https://doi.org/10.1016/j.memsci.2020.117970
  34. D. Liu, Y. Wu, Q. Xia, Z. Li, and H. Xi, Experimental and molecular simulation studies of CO2 adsorption on zeolitic imidazolate frameworks: ZIF-8 and amine-modified ZIF-8, Adsorption, 19, 25-37 (2013). https://doi.org/10.1007/s10450-012-9407-1
  35. S. Wang, J. Cui, S. Zhang, X. Xie, and W. Xia, Enhancement thermal stability and CO2 adsorption property of ZIF-8 by pre-modification with polyaniline, Mater. Res. Express, 7, 1-8 (2020).
  36. H. Ismail, P. Pasbakhsh, A. F. M. Noor, and A. A. Bakar, Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites, Polymer Testing, 27, 841-850 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  37. P. Bernardo, J. C. Jansen, F. Bazzarelli, F. Tasselli, A. Fuoco, and K. Friess, Gas transport properties of Pebax®/room temperature ionic liquid gel membranes, Sep. Purif. Technol., 97, 73-82 (2012). https://doi.org/10.1016/j.seppur.2012.02.041
  38. M. M. Rahman, V. Filiz, S. Shishatskiy, C. Abetz, S. Neumann, and S. Bolmer, Pebax® with PEG functionalized POSS as nanocomposite membranes for CO2 separation, J. Membr. Sci., 437, 286-297 (2013). https://doi.org/10.1016/j.memsci.2013.03.001
  39. A. Ehsani and M. Pakizeh, Synthesis, characterization and gas permeation study of ZIF-11/Pebax2533 mixed matrix membranes, J. Taiwan Inst. Chem. Eng, 66, 414-423 (2016). https://doi.org/10.1016/j.jtice.2016.07.005
  40. J. M. P. Scofield, P. A. Gurr, J. Kim, Q. Fu, S. E. Kentish, G. G. Qiao, Development of novel fluorinated additives for high performance CO2 separation thin-film composite membranes, J. Membr. Sci., 499, 119-200 (2016).
  41. V. Nafisi and M. B. Hagg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci., 459, 244-255 (2014). https://doi.org/10.1016/j.memsci.2014.02.002
  42. L. Xu, L. Xing, C. Wang, J. Yu, L. Zhang, and Y. Pan, Enhanced permeation performance of polyether-polyamide block copolymer membranes through incorporating ZIF-8 nanocrystals, Chin. J. Chem. Eng., 25, 882-891 (2017). https://doi.org/10.1016/j.cjche.2016.11.007
  43. H. R. Amedi and M. Aghajani, Aminosilane-functionalized ZIF-8/PEBAX mixed matrix membrane for gas separation application, Microporous Mesoporous Mater., 247, 124-135 (2017). https://doi.org/10.1016/j.micromeso.2017.04.001
  44. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030