DOI QR코드

DOI QR Code

Synthesis and Characterization of Quartz Nanocrystals

석영 나노 결정의 합성과 특성

  • Moon, Gyuseop (Department of Polymer Science and Chemical Engineering, Pusan National University) ;
  • Chung, Sungwook (School of Chemical and Biomolecular Engineering, Pusan National University)
  • 문규섭 (부산대학교 화학공학.고분자공학과) ;
  • 정성욱 (부산대학교 응용화학공학부)
  • Received : 2020.11.10
  • Accepted : 2020.11.21
  • Published : 2020.12.10

Abstract

We report the synthesis and characterization of quartz nanocrystals (NCs). Quartz NCs were synthesized from the dissolution of amorphous silica nanoparticle precursors under the mild hydrothermal condition of ~250 ℃ and autogenic pressure. It was confirmed that the average size of the nanostructure with a highly crystalline phase of α-quartz can be tuned in a relatively narrow range from 407.5 to 826.2 nm with respect to the reaction time. α-Quartz NCs have potential uses for technological applications in optoelectronics, sensing, and rechargeable battery devices.

본 연구에서는 석영 나노 결정의 합성과 특성 분석을 진행하였다. 비정질 실리카 나노 입자 전구체가 용해된 용액을 섭씨 250도 온도와 자가 압력의 온건한 열수 반응 하에서 석영 나노 결정을 성공적으로 합성하였다. 합성된 나노 결정의 화학적 조성과 구조 분석을 시행하였다. 알파 석영의 특징적인 고결정질 상의 나노 구조를 가지는 석영 나노 결정의 평균 크기는 반응 시간에 따라 407.5 에서 826.2 nm까지 비교적 좁은 범위에서 조정될 수 있음을 발견하였다. 본 연구를 통해 발견된 석영 나노 입자는 광전자, 센서, 및 충전식 배터리 소자의 기술 응용에 매우 중요한 잠재적 용도가 있을 것으로 사료된다.

Keywords

References

  1. C. H. Yoder, Ionic Compounds: Applications of Chemistry to Mineralogy, 1st ed., 173-175, John Wiley & Sons, NJ, USA (2006).
  2. H. Grimm and B. Dorner, On the mechanism of the α-β phase transformation of quartz, J. Phys. Chem. Solids, 36, 407-413 (1975). https://doi.org/10.1016/0022-3697(75)90066-9
  3. P. Bettermann and F. Liebau, Transformation of amorphous silica to crystalline silica under hydrothermal conditions, Contrib. Mineral Petrol., 53, 25-36 (1975). https://doi.org/10.1007/BF00402452
  4. W. S. Fyfe and D. S. McKay, Hydroxyl ion catalysis of the crystallization of amorphous silica at 330 ℃ and some observations on the hydrolysis of albite solutions, Am. Mineral., 47, 83-89 (1962).
  5. J. F. Bertone, J. Cizeron, R. K. Wahi, J. K. Bosworth, and V. L. Colvin, Hydrothermal synthesis of quartz nanocrystals, Nano Lett., 3, 655-659 (2003). https://doi.org/10.1021/nl025854r
  6. P. Buckley, N. Hargreaves, and S. Cooper, Nucleation of quartz under ambient conditions, Commun. Chem., 1, 49 (2018). https://doi.org/10.1038/s42004-018-0049-4
  7. X. M. Jiang, Y. B. Jiang, and C. J. Brinker, Hydrothermal synthesis of monodisperse single-crystalline alpha-quartz nanospheres, Chem. Commun., 47, 7524-7526 (2011). https://doi.org/10.1039/c1cc11115a
  8. G. Moon, N. Lee, S. Kang, J. Park, Y.-E. Kim, S.-A. Lee, R. K. Chitumalla, J. Jang, Y. Choe, Y.-K. Oh, and S. Chung, Hydrothermal synthesis of novel two-dimensional α-quartz nanoplates and their applications in energy-saving, high-efficiency, microalgal biorefineries, Chem. Eng. J., Doi:10.1016/j.cej.2020.127467.
  9. E.-H. Jang, S. P. Pack, I. Kim, and S. Chung, A systematic study of hexavalent chromium adsorption and removal from aqueous environments using chemically functionalized amorphous and mesoporous silica nanoparticles, Sci. Rep., 10, 5558 (2020). https://doi.org/10.1038/s41598-020-61505-1
  10. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26, 62-69 (1968). https://doi.org/10.1016/0021-9797(68)90272-5
  11. M. Takeuchi, G. Martra, S. Coluccia, and M. Anpo, Evaluation of the adsorption states of H2O on oxide surfaces by vibrational absorption: Near- and mid-infrared spectroscopy, J. Near Infrared Spec., 17, 373-384 (2009). https://doi.org/10.1255/jnirs.843
  12. B.-G. Kim, S.-Y. Kang, and J.-J. Kim, FTIR study of fluorinated silicon oxide film, J. Phys. D: Appl. Phys., 30, 1720-1724 (1997). https://doi.org/10.1088/0022-3727/30/12/005