DOI QR코드

DOI QR Code

Sawdust reinforced polybenzoxazine composites: Thermal and structural properties

  • Received : 2020.08.21
  • Accepted : 2020.12.15
  • Published : 2020.12.25

Abstract

In this study, Mangifera Indica tree sawdust reinforced bisphenol-A aniline based benzoxazine composites were prepared by varying the sawdust from 20 wt% to 45 wt%. Thermogravimetric analysis of composites revealed excellent compatibility between polybenzoxazine and sawdust from the remarkable growth in char yield from 22% (neat resin) to 36% (for highly filled) and glass transition temperature from 151 to 165℃. Ultimate weight loss of the composites evaluated from the Derivatives of TG plots. Limiting oxygen index values of the composites reported considerable growth i.e.,from 28 to 32 along with the increase in filler content. Differential scanning calorimetry results showed that sawdust particles have an insignificant effect on curing temperature (219℃) for the raise in sawdust content. Structure of the sawdust, benzoxazine monomer, polybenzoxazine and composites were studied using Fourier transformation infrared spectroscopy. Overall, polybenzoxazine composites with sawdust as filler showed improved thermal properties when compared with pure polybenzoxazine.

Keywords

Acknowledgement

The authors would like to acknowledge the funding given by management and the support given by Professors and research scholars of Chemical Engineering and Mechanical engineering departments. The Author would also like to thank the researchers/academicians those works have been cited directly or indirectly in this paper.

References

  1. Bettini, S.H.P., Uliana, A.T. and Holzschuh, D. (2008), "Effect of process parameters and composition on mechanical, thermal, and morphological properties of polypropylene/sawdust composites", J. Appl. Polym. Sci., 108(4), 2233-2241. https://doi.org/10.1002/app.27867
  2. Correa, C.A., Razzino, C.A. and Hage, E. (2007), "Role of maleated coupling agents on the interface adhesion of polypropylene-wood composites", J. Thermoplast. Compos. Mater., 20(3), 323-339. https://doi.org/10.1177/0892705707078896
  3. Dayo, A.Q., Gao, B.C., Wang, J., Liu, W.B., Derradji, M., Shah, A.H. and Babar, A.A. (2017), "Natural hemp fiber reinforced polybenzoxazine composites: Curing behavior, mechanical and thermal properties", Compos. Sci. Technol., 144, 114-124. https://doi.org/10.1016/j.compscitech.2017.03.024
  4. Dayo, A.Q., Ma, R.K., Kiran, S., Zegaoui, A., Cai, W.A., Shah, A.H., Wang, J., Derradji, M. and Liu, W.B. (2018a), "Reinforcement of economical and environment friendly Acacia catechu particles for the reduction of brittleness and curing temperature of polybenzoxazine thermosets", Compos. Part A Appl. Sci. Manuf. 105, 258-264. https://doi.org/10.1016/j.compositesa.2017.12.004
  5. Dayo, A.Q., Zegaoui, A., Nizamani, A.A., Kiran, S., Wang, J., Derradji, M., Cai, W.A. and Liu, W.B. (2018b), "The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties", Mater. Chem. Phys., 217, 270-277. https://doi.org/10.1016/j.matchemphys.2018.06.040
  6. Dayo, A.Q., Babar, A.A., Qin, Q.R., Kiran, S., Wang, J., Shah, A.H., Zegaoui, A., Ghouti, H.A. and Liu, W.B. (2020), "Effects of accelerated weathering on the mechanical properties of hemp fibre/ polybenzoxazine based green composites", Compos. Part A Appl. Sci. Manuf. 128, 1-7. https://doi.org/10.1016/j.compositesa.2019.105653
  7. Dunkers, J. and Ishida, H. (1995), "Vibrational assignment of N,Nbis (3,5-dimethyl-2-hydroxy-benzyl) methylamine in the fingerprint regine", Spectrochim. Acta., 51(5), 855-867. https://doi.org/10.1016/0584-8539(94)00187-G
  8. Felix, J.S., Domeno, C. and Nerin, C. (2013), "Characterization of wood plastic composites made from landfill-derived plastic and sawdust: volatile compounds and olfactometric analysis", Waste. Manage., 33(3), 645-655. https://doi.org/10.1016/j.wasman.2012.11.005
  9. Garea, S.A., lovu, H., Nicolescu, A. and Calin, D. (2007), "Thermal polymerization of benzoxazine monomers followed by GPC, FT-IR and DETA", Polym. Testing., 26(2), 162-171. https://doi.org/10.1016/j.polymertesting.2006.09.011
  10. Ghosh, N.N., Kiskan, B. and Yagci, Y. (2007), "Polybenzoxazines-new high performance thermosetting resins: synthesis and properties", Prog. Polym. Sci., 32(11), 1344-1391. https://doi.org/10.1016/j.progpolymsci.2007.07.002
  11. Hariharan, A., Prabunathan, P., Kumaravel, A., Manoj, M. and Alagar, M. (2020), "Bio-based polybenzoxazine composites for oil-water separation, sound absorption and corrosion resistance applications", Polym. Test., 86, 1-23. https://doi.org/10.1016/j.polymertesting.2020.106443
  12. Herai, Y., Kouno, K., Hashimoto, M. and Nagaoka, T. (2006), "Relationships between microbial biomass nitrogen, nitrate leaching and nitrogen uptake by corn in a compost and chemical fertilizer-amended regosol", Soil. Sci. Plant. Nutr. 52(2), 186-194. https://doi.org/10.1111/j.1747-0765.2006.00031.x
  13. Hisham, S., Faieza, A.A., Ismail, N., Sapuan, S.M. and Ibrahim, M.S. (2011), "Flexural mechanical characteristic of sawdust and chip wood filled epoxy composites", Key Eng. Mater., 471, 1064-1069. https://doi.org/10.4028/www.scientific.net/KEM.471-472.1064
  14. Ishida, H. (2011), Handbook of Benzoxazine Resins, Elsevier, USA.
  15. Ismail, H., Edyhan, M. and Wirjosentono, B. (2002), "Bamboo fibre filled natural rubber composites: the effects of filler loading and bonding agent", Polym. Test. 21(2), 139-144. https://doi.org/10.1016/S0142-9418(01)00060-5
  16. Kazayawoko, M., Balatinecz, J.J. and Matuana, L.M. (1999), "Surface modification and adhesion mechanisms in wood fiber polypropylene composites", J. Mater. Sci., 34, 6189-6199. https://doi.org/10.1023/A:1004790409158
  17. Kiskan, B., Ghosh, N.N. and Yagci, Y. (2011), "Polybenzoxazine-based composites as high performance materials", Polym. Int., 60(2), 167-177. https://doi.org/10.1002/pi.2961
  18. Kolaitis, D.I., Asimakopoulou, E.K. and Founti, M.A. (2014), "Fire protection of light and massive timber elements using gypsum plaster boards and wood based panels: a large-scale compartment fire test", Constr. Build. Mater. 73, 163-170. https://doi.org/10.1016/j.conbuildmat.2014.09.027
  19. Latthe, S.S., Kodag, V.S., Sutar, R.S., Bhosale, A.K., Nagappan, S., Ha, C.S., Sadasivuni, K.K., Kulal, S.R., Liu, S. and Xing, R. (2020), "Sawdust-based superhydrophobic pellets for efficient oil-water separation", Mater. Chem. Phys., 243, 1-10. https://doi.org/10.1016/j.matchemphys.2020.122634
  20. Li, T.Q. and Wolcott, M.P. (2006), "Rheology of wood plastics melt. Part 2. Effects of lubricating systems in HDPE/maple composites", Polym. Eng. Sci., 46(4), 464-473. https://doi.org/10.1002/pen.20505
  21. Moslemi, A. (1988), "Inorganically bonded wood composites", Chem. Tech., 18(8), 504-510.
  22. Nannan, L., Hongqiang, Y., Lei, X., Lebo, M., Zhengping, F., Yihu, S. and Hao, W. (2015), "Flame retarding and reinforcing modification of ramie/ polybenzoxazine composites by surface treatment of ramie fabric", Compos. Sci. Technol., 121, 82-88. https://doi.org/10.1016/j.compscitech.2015.07.013
  23. Ohashi, S. and Ishida, H. (2017), Advanced and Emerging Polybenzoxazine Science and Technology, Elsevier, USA.
  24. Radoslaw, M., Dorota, D., Adam, D., Rafal, C. and Dorota, D. (2020), "By-Products of sawmill industry as raw materials for manufacture of chip-sawdust boards", J. Build. Eng., 32(1), 1-26. https://doi.org/10.1016/j.jobe.2020.101460
  25. Ravi, M.R., Jhalani, A. Sinha, S. and Anjan, R. (2004), "Development of a semi-empirical model for pyrolysis of an annular sawdust bed", J. Anal. Appl. Pyrol., 71(1), 353-374. https://doi.org/10.1016/S0165-2370(03)00102-5
  26. Ribeiro, A.B., Mateus, E.P., Ottosen, L.M. and Nielsen, G.B. (2000), "Electrodialytic removal of Cu, Cr, and As from chromated copper arsenate-treated timber waste", Environ. Sci. Technol., 34(5), 784-788. https://doi.org/10.1021/es990442e
  27. Rimdusit, S., Tanthapanichakoon, W. and Jubsilp, C. (2006), "High performance wood composites from highly filled polybenzoxazine", J. Appl. Polym. Sci., 99(3), 1240-1253. https://doi.org/10.1002/app.22607
  28. Rimdusit, S., Kampangsaeree, N., Tanthapanichakoon, W., Takeichi, T. and Suppakarn, N. (2007), "Development of wood‐substituted composites from highly filled polybenzoxazine-phenolic novolac alloys", Polym. Eng. Sci., 47(2), 140-149. https://doi.org/10.1002/pen.20683
  29. Rimdusit, S., Jubsilp, C. and Tiptipakoran, S. (2013), Alloys and Composites of Polybenzoxazines, Springer, Singapore.
  30. Tiuc, A.E., Nemes, O., Vermesan, H. and Toma, A.C. (2019), "New sound absorbent composite materials based on sawdust and polyurethane foam", Compos. B. Eng., 165, 120-130. https://doi.org/10.1016/j.compositesb.2018.11.103
  31. Yagci, Y., Kiskan, B. and Ghosh, N.N. (2009), "Recent advancement on polybenzoxazine-a newly developed high performance thermoset", J. Polym. Sci. Part A: Polym. Chem., 47(21), 5565-5576. https://doi.org/10.1002/pola.23597
  32. Yousefi, A. and Lafleur, P.G. (1997), "Kinetic studies of thermoset cure reactions: a review", Polym. Compos., 18(2), 157-168. https://doi.org/10.1002/pc.10270
  33. Zafeiropoulos, N.E., Baillie, C.A. and Hodgkinson, J.M. (2002), "Engineering and characterization of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface", Composites Part A. 33(9), 1185-1190. https://doi.org/10.1016/S1359-835X(02)00088-X