DOI QR코드

DOI QR Code

The Improvement of Summer Season Precipitation Predictability by Optimizing the Parameters in Cumulus Parameterization Using Micro-Genetic Algorithm

마이크로 유전알고리즘을 이용한 적운물리과정 모수 최적화에 따른 여름철 강수예측성능 개선

  • Jang, Ji-Yeon (Numerical Data Application Division, Numerical Modeling Center, KMA) ;
  • Lee, Yong Hee (Numerical Data Application Division, Numerical Modeling Center, KMA) ;
  • Choi, Hyun-Joo (Numerical Data Application Division, Numerical Modeling Center, KMA)
  • 장지연 (기상청 수치모델링센터 수치자료응용과) ;
  • 이용희 (기상청 수치모델링센터 수치자료응용과) ;
  • 최현주 (기상청 수치모델링센터 수치자료응용과)
  • Received : 2020.06.28
  • Accepted : 2020.09.25
  • Published : 2020.12.31

Abstract

Three free parameters included in a cumulus parameterization are optimized by using micro-genetic algorithm for three precipitation cases occurred in the Korea Peninsula during the summer season in order to reduce biases in a regional model associated with the uncertainties of the parameters and thus to improve the predictability of precipitation. The first parameter is the one that determines the threshold in convective trigger condition. The second parameter is the one that determines boundary layer forcing in convective closure. Finally, the third parameter is the one used in calculating conversion parameter determining the fraction of condensate converted to convective precipitation. Optimized parameters reduce the occurrence of convections by suppressing the trigger of convection. The reduced convection occurrence decreases light precipitation but increases heavy precipitation. The sensitivity experiments are conducted to examine the effects of the optimized parameters on the predictability of precipitation. The predictability of precipitation is the best when the three optimized parameters are applied to the parameterization at the same time. The first parameter most dominantly affects the predictability of precipitation. Short-range forecasts for July 2018 are also conducted to statistically assess the precipitation predictability. It is found that the predictability of precipitation is consistently improved with the optimized parameters.

Keywords

References

  1. Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674-701. https://doi.org/10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2
  2. Bechtold, P., N. Semane, P. Lepez, J.-P. Chaboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734-753, doi:10.1175/JASD-13-0163.1.
  3. Bae, S. Y., S.-Y. Hong, and W.-K. Tao, 2019: Development of a single-moment cloud microphysics scheme with prognostic hail for the weather research and forecasting (WRF) model. Asia-Pac. J. Atmos. Sci., 55, 233-245, doi:10.1007/s13143-018-0066-3.
  4. Beak, S., 2017: A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model. J. Adv. Model. Earth Syst., 9, 1628-1640, doi:10.1002/2017MS000994.
  5. Emanuel, K. A., 1991: A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313-2329. https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2
  6. Emanuel, K. A., and M. Zivkovic-Rothman, 1999: Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782. https://doi.org/10.1175/1520-0469(1999)056<1766:DAEOAC>2.0.CO;2
  7. Goldberg, D. E., 1989: Genetic algorithms in search, optimization and machine learning. Addison-Wesley Professional, 432 pp.
  8. Grell, G. A., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764-787. https://doi.org/10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
  9. Groenemeijer, P., and G. C. Craig, 2012: Ensemble forecasting with a stochastic convective parametrization based on equilibrium statistics. Atmos. Chem. Phys., 12, 4555-4565, doi:10.5194/acp-12-4555-2012.
  10. Han, J.-Y., and S. Y. Hong, 2018: Precipitation forecast experiments using the weather research and forecasting (WRF) model at gray-zone resolutions. Wea. Forecasting, 33, 1605-1616, doi:10.1175/WAF-D-18-0026.1.
  11. Han, J.-Y., S. Y. Hong,, K.-S. Sunny Lim, and J. Han, 2016: Sensitivity of a cumulus parameterization scheme to precipitation production representation and its impact on a heavy rain event over Korea. Mon. Wea. Rev., 144, 2125-2135, doi:10.1175/MWR-D-15-0255.1.
  12. Han, J.-Y., S. Y. Hong,, and Y. C. Kwon, 2020: The performance of a revised simplified Arakawa-Schubert (SAS) convection scheme in the medium-range forecasts of the Korean Integrated Model (KIM). Wea. Forecasting, 35, 1113-1128, doi:10.1175/WAF-D-19-0219.1.
  13. Holland, J. H., 1975: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. University of Michigan Press, 183 pp.
  14. Hong, S., X. Yu, S. K. Park, Y.-S. Choi, and B. Myong, 2014: Assessing optimal set of implemented physical parameterization schemes in a multi-physics land surface model using genetic algorithm. Geosci. Model Dev., 7, 2517-2529, doi:10.5194/gmd-7-2517-2014.
  15. Hong, S. Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6-ES9, doi:10.1175/2011BAMS3224.1.
  16. Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In K. A. Emanuel et al. Eds., The Representation of Cumulus Convection in Numerical Models. Amer. Meteor. Soc., 165-170.
  17. Krishnakumar, K., 1989: Micro-genetic Algorithms for Stationary and Non-stationary Function Optimization. Proc. SPIE Intelligent Control and Adaptive System, 1196, Philadelphia, PA, United States, SPIE, 289-296.
  18. Kwon, Y. C., and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 583-598, doi:10.1175/MWR-D-16-0034.1.
  19. Lee, Y. H., S. K. Park, and D.-E. Chang, 2006: Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast. Ann. Geophys., 24, 3185-3189. https://doi.org/10.5194/angeo-24-3185-2006
  20. Lee, Y. H., J.-E. Nam, and S. Joo, 2016: A optimization of Z-R relationship in the summer of 2014 using the micro-genetic algorithm. Journal of Korean Institute of Intelligent Systems, 26, 1-8 (in Korean with English abstract). https://doi.org/10.5391/JKIIS.2016.26.1.001
  21. Li, S., and Coauthors, 2018: Estimating convection parameters in the GFDL CM2.1 Model using ensemble data assimilation. J. Adv. Model. Earth Syst., 10, 989-1010, doi:10.1002/2017MS001222.
  22. Ma, L.-M., and Z.-M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190-211. https://doi.org/10.1016/j.atmosres.2008.09.022
  23. Moorthi, S. A., and M. J. Suarez, 1992: Relaxed ArakawaSchubert. A parameterization of moist convection for general circulation models. Mon. Wea. Rev., 120, 978-1002. https://doi.org/10.1175/1520-0493(1992)120<0978:RASAPO>2.0.CO;2
  24. Nam, J. E., Y. H. Lee, J. C. Ha, and K. Y. Jung, 2012: Production of rainfall reanalysis data through development of synthetic precipitation production technique on the Korea peninsula. Proc. The Spring Meeting of KMS, Korean Meteorological Society, 136-137.
  25. Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601-608. https://doi.org/10.1175/2008WAF2222159.1
  26. Shin, H. H., and S.-Y. Hong, 2013: Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos., Sci., 70, 3248-3261, doi:10.1175/JAS-D-12-0290.1.
  27. Shin, H. H., and S.-Y. Hong, 2015: Representation of the subgridscale turbulent transport in convective boundary layers at gray-zone resolutions. Mon. Wea. Rev., 143, 250-271, doi:10.1175/MWR-D-14-00116.1.
  28. Shutts, G., and A. C. Pallares, 2014: Assessing parametrization uncertainty associated with horizontal resolution in numerical weather prediction model. Phil. Trans. R. Soc. A., 372, 20130284, doi:10.1098/rsta.2013.0284.
  29. van Lier-Walqui, M., T. Vukicevic, and D. J. Posselt, 2012: Quantification of cloud microphysical parameterization uncertainty using radar reflectivity. Mon. Wea. Rev., 140, 3442-3466, doi:10.1175/MWR-D-11-00216.1.
  30. Wang, Y., G. J. Zhang, and G. C. Craig, 2016: Stochastic convective parameterization improving the simulation of tropical precipitation variability in the NCAR CAM5. Geophys. Res. Lett., 43, 6612-6619, doi:10.1002/2016GL069818.
  31. Yu, X., S. K. Park, Y. H. Lee, and Y. S. Choi, 2013: Quantitative precipitation forecast of a tropical cyclone through optimal parameter estimation in a convective parameterization. SOLA, 9, 36-39, doi:10.2151/sola.2013-009.
  32. Zhang, G. J., and N. A. McFarlane, 1995: Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian climate centre general circulation model. Atmos. Ocean, 33, 407-446. https://doi.org/10.1080/07055900.1995.9649539
  33. Zou, L., Y. Qian, T. Zhou, and B. Yang, 2014: Parameter tuning and calibration of RegCM3 with MIT-Emanuel cumulus parameterization scheme over CORDEX East Asia domain. J. Climate, 27, 7687-7701, doi:10.1175/JCLI-D-14-00229.1.