DOI QR코드

DOI QR Code

Evaluation of Performance and Uncertainty for Multi-RCM over CORDEX-East Asia Phase 2 region

CORDEX-동아시아 2단계 영역에 대한 다중 RCM의 모의성능 및 불확실성 평가

  • Kim, Jin-Uk (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Tae-Jun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Do-Hyun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Jin-Won (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Cha, Dong-Hyun (School of Urban and Engineering, Ulsan National Institute of Science and Technology) ;
  • Min, Seung-Ki (School Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
  • 김진욱 (국립기상과학원 미래기반연구부) ;
  • 김태준 (국립기상과학원 미래기반연구부) ;
  • 김도현 (국립기상과학원 미래기반연구부) ;
  • 김진원 (국립기상과학원 미래기반연구부) ;
  • 차동현 (울산과학기술원 도시환경공학부) ;
  • 민승기 (포항공과대학교) ;
  • 김연희 (국립기상과학원 미래기반연구부)
  • Received : 2020.07.31
  • Accepted : 2020.10.13
  • Published : 2020.12.31

Abstract

This study evaluates multiple Regional Climate Models (RCMs) in simulating temperature and precipitation over the Far East Asia (FEA) and estimates the portions of the total uncertainty originating in the RCMs and the driving Global Climate Models (GCMs) using nine present-day (1981~2000) climate data obtained from combinations of three GCMs and three RCMs in the CORDEX-EA phase2. Downscaling using the RCMs generally improves the present temperature and precipitation simulated in the GCMs. The mean temperature climate in the RCM simulations is similar to that in the GCMs; however, RCMs yield notably better spatial variability than the GCMs. In particular, the RCMs generally yield positive added values to the variability of the summer temperature and the winter precipitation. Evaluating the uncertainties by the GCMs (VARGCM) and the RCMs (VARRCM) on the basis of two-way ANOVA shows that VARRCM is greater than VARGCM in contrast to previous studies which showed VARGCM is larger. In particular, in the winter temperature, the ocean has a very large VARRCM of up to 30%. Precipitation shows that VARRCM is greater than VARGCM in all seasons, but the difference is insignificant. In the following study, we will analyze how the uncertainty of the climate model in the present-day period affects future climate change prospects.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 기상청 국립기상과학원 「AR6 기후변화시나리오 개발·평가」 (KMA2018-00321)의 지원으로 수행되었습니다.

References

  1. Choi, Y.-W., and J.-B. Ahn, 2017: Impact of cumulus parameterization schemes on the regional climate simulation for the domain of CORDEX-East Asia phase 2 using WRF model. Atmosphere, 27, 105-118, doi:10.14191/Atmos.2017.27.1.105 (in Korean with English abstract).
  2. Christensen, J. H., T. R. Carter, M. Rummukainen, and G. Amanatidis, 2007: Evaluating the performance and utility of regional climate models: the PRUDENCE project. Climatic Change, 81, 1-6.
  3. Christensen, O. B., and E. Kjellstrom, 2020: Partitioning uncertainty components of mean climate and climate change in a large ensemble of European regional climate model projections. Clim. Dyn., 54, 4293-4308, doi:10.1007/s00382-020-05229-y.
  4. Deque, M., S. Somot, E. Sanchez-Gomez, C. M. Goodess, D. Jacob, G. Lenderink, and O. B. Christensen, 2012: The spread amongst ENSEMBLES regional scenarios: regional climate models, driving general circulation models and interannual variability. Clim. Dyn., 38, 951-964, doi:10.1007/s00382-011-1053-x.
  5. Fu, C., and Coauthors, 2005: Regional climate model inter-comparison project for Asia. Bull. Amer. Meteor. Soc., 86, 257-266. https://doi.org/10.1175/BAMS-86-2-257
  6. Hong, S.-Y., N.-K. Moon, K.-S. S. Lim, and J.-W. Kim, 2010: Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study. Asia-Pac. J. Atmos. Sci., 46, 425-435, doi:10.1007/s13143-010-0024-1.
  7. Im, E.-S., Y.-W. Choi, and J.‐B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections. J. Geophys. Res. Atmos., 122, 11444-11461, doi:10.1002/2017JD026731.
  8. Inatsu, M., T. Sato, T. J. Yamada, R. Kuno, S. Sugimoto, M. A. Farukh, Y. N. Pokhrel, and S. Kure, 2015: Multi-GCM by multi-RAM experiments for dynamical downscaling on summertime climate change in Hokkaido. Atmos. Sci. Lett., 16, 297-304, doi:10.1002/asl2.557.
  9. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  10. Jo, S., J.-B. Ahn, D.-H. Cha, S.-K. Min, M.-S. Suh, Y.-H. Byun, and J.-U. Kim, 2019: The Koppen‐Trewartha climate‐type changes over the CORDEX‐East Asia phase 2 domain under 2 and 3℃ global warming. Geophys. Res. Lett., 46, 14030-14041, doi:10.1029/2019GL085452.
  11. Kang, H.-S., D.-H. Cha, and D.-K. Lee, 2005: Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. J. Geophys. Res., 110, D10105. https://doi.org/10.1029/2004jd005266
  12. Kim, J., and Coauthors, 2013: Evaluation of the surface climatology over the conterminous United States in the North American regional climate change assessment program hindcast experiment using a regional climate model evaluation system. J. Climate, 26, 5698-5715, doi:10.1175/JCLI-D-12-00452.1.
  13. Kim, J., and Coauthors, 2014: Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim. Dyn., 42, 1189-1202, doi:10.1007/s00382-013-1751-7.
  14. Kim, J., and Coauthors, 2018: Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations. Clim. Dyn., 50, 231-248, doi:10.1007/s00382-017-3601-5.
  15. Lee, D.-K., and M.-S. Suh, 2000: Ten-year East Asian summer monsoon simulation using a regional climate model (RegCM2). J. Geophys. Res. Atmos., 105, 29565-29577. https://doi.org/10.1029/2000JD900438
  16. Lee, J.-W., S.-Y. Hong, E.-C. Chang, M.-S. Suh, and H.-S. Kang, 2014: Assessment of future climate change over East Asia due to the RCP scenarios downscaled by GRIMs-RMP. Clim. Dyn., 42, 733-747, doi:10.1007/s00382-013-1841-6.
  17. Oh, S.-G., M.-S. Suh, D.-H. Cha, and S.-J. Choi, 2011: Simulation skills of RegCM4 for regional climate over CORDEX East Asia driven by HadGEM2-AO. J. Korean Earth Sci. Soc., 32, 732-749, doi:10.5467/JKESS.2011.32.7.732 (in Korean with English abstract).
  18. Oh, S.-G., J.-H. Park, S.-H. Lee, and M.-S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. J. Geophys. Res. Atmos., 119, 2913-2927, doi:10.1002/2013JD020693.
  19. Oh, S.-G., and Coauthors, 2016: Projections of high resolution climate changes for South Korea using multipleregional climate models based on four RCP scenarios. Part 2: precipitation. Asia-Pac. J. Atmos. Sci., 52, 171-189, doi:10.1007/s13143-016-0018-8.
  20. Park, J.-H., S.-G. Oh, and M.-S. Suh, 2013: Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res. Atmos., 118, 1652-1667, doi:10.1002/jgrd.50159.
  21. Rowell, D. P., 2005: A scenario of European climate change for the late twenty-first century: seasonal means and interannual variability. Clim. Dyn., 25, 837-849. https://doi.org/10.1007/s00382-005-0068-6
  22. Suzuki-Parker, A., H. Kusaka, I. Takayabu, K. Dairaku, N. N. Ishizaki, and S. Ham, 2018: Contributions of GCM/RCM uncertainty in ensemble dynamical downscaling for precipitation in East Asian summer monsoon season. SOLA, 14, 97-104. https://doi.org/10.2151/sola.2018-017
  23. Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos., 106, 7183-7192. https://doi.org/10.1029/2000JD900719