DOI QR코드

DOI QR Code

서울의 기상 조건에 따른 미세먼지와 시정의 상관성

The Relationship of Particulate Matter and Visibility Under Different Meteorological Conditions in Seoul, South Korea

  • 김민석 (연세대학교 대기과학과) ;
  • 이서영 (연세대학교 대기과학과) ;
  • 조예슬 (연세대학교 대기과학과) ;
  • 구자호 (연세대학교 대기과학과) ;
  • 염성수 (연세대학교 대기과학과) ;
  • 김준 (연세대학교 대기과학과)
  • Kim, Minseok (Department of Atmospheric Sciences, Yonsei University) ;
  • Lee, Seoyoung (Department of Atmospheric Sciences, Yonsei University) ;
  • Cho, Yeseul (Department of Atmospheric Sciences, Yonsei University) ;
  • Koo, Ja-Ho (Department of Atmospheric Sciences, Yonsei University) ;
  • Yum, Seong Soo (Department of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Department of Atmospheric Sciences, Yonsei University)
  • 투고 : 2020.08.27
  • 심사 : 2020.10.20
  • 발행 : 2020.12.31

초록

To understand the characteristics of the relationship between visibility and particulate matter (PM) in different meteorological conditions, we investigated the contributions of PM and relative humidity (RH) to visibility in Seoul, South Korea. For the period from 2001 to 2018, both PM and RH show descending trends, resulting in a visibility increase. PM has little impact on the hourly variation of visibility, which could be explained more by the RH variability. Meanwhile, the daily change of PM accounts for daily visibility variation. For the monthly variation of visibility, both PM and RH showed similar influence. The correlation coefficients of PM10, PM2.5, and RH with visibility was -0.486, -0.644, and -0.556, respectively, which became higher during the high PM seasons of spring and winter. The correlation coefficient between PM2.5 and visibility was -0.454 for RH higher than 80%, and -0.780 for RH between 40% and 60%. From 2017 to 2018, there were 10 cases of extreme visibility impairment, among which five cases were incurred by high PM pollution, and two cases were by high humidity. Further analysis with PM chemical composition measurements is required to better understand the characteristics of visibility in Seoul.

키워드

과제정보

본 연구는 환경부의 환경정책기반공공기술개발사업(2017000160001)에서 지원받았습니다. 본 저작물은 국립환경과학원에서 작성하여 공공누리 제3유형으로 개방한 대기오염물질 최종확정자료와 기상청에서 작성하여 공공누리 제1유형으로 개방한 종관기상관측자료를 이용하였으며, 해당 저작물은 각각 Airkorea (https://www.airkorea.or.kr/)와 기상자료개방포털(https://data.kma.go.kr/)에서 무료로 다운받으실 수 있습니다.

참고문헌

  1. Ahmed, E., K.-H. Kim, Z.-H. Shon, and S.-K. Song, 2015: Long-term trend of airborne particulate matter in Seoul, Korea from 2004 to 2013. Atmos. Environ., 101, 125-133, doi:10.1016/j.atmosenv.2014.11.024.
  2. Bzdek, B. R., and J. S. Walker, 2019: Vibrational spectroscopy of individual aerosol droplets by optical tweezers. Spectroscopy, 34, 22-31.
  3. Chen, J., S. Qiu, J. Shang, O. M. F. Wilfrid, X. Liu, H. Tian, and J. Boman, 2014: Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China. Aerosol Air Qual. Res., 14, 260-268, doi:10.4209/aaqr.2012.12.0360.
  4. Cheng, Z., S. Wang, J. Jiang, Q. Fu, C. Chen, B. Xu, J. Yu, X. Fu, and J. Hao, 2013: Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut., 182, 101-110, doi:10.1016/j.envpol.2013.06.043.
  5. Cho, H. K., M. J. Jeong, J. Kim, and Y. J. Kim, 2003: Dependence of diffuse photosynthetically active solar irradiance on total optical depth. J. Geophys. Res., 108, 4267.
  6. Fu, C., J. Wu, Y. Gao, D. Zhao, and Z. Han, 2013: Consecutive extreme visibility events in China during 1960-2009. Atmos. Environ., 68, 1-7, doi:10.1016/j.atmosenv.2012.11.035.
  7. Ghim, Y. S., K.-C. Moon, S. Lee, and Y. P. Kim, 2005: Visibility trends in Korea during the past two decades. J. Air Waste Manag. Assoc., 55, 73-82. https://doi.org/10.1080/10473289.2005.10464599
  8. Hyslop, N. P., 2009: Impaired visibility: the air pollution people see. Atmos. Environ., 43, 182-195. https://doi.org/10.1016/j.atmosenv.2008.09.067
  9. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 1535 pp.
  10. Kang, C.-M., H. S. Lee, B.-W. Kang, S.-K. Lee, and Y. Sunwoo, 2004: Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmos. Environ., 38, 4749-4760. https://doi.org/10.1016/j.atmosenv.2004.05.007
  11. Kim, D.-S., 2013: Air pollution history, regulatory changes, and remedial measures of the current regulatory regimes in Korea. J. Korean Soc. Atmos. Environ., 29, 353-368, doi:10.5572/KOSAE.2013.29.4.353 (in Korean with English abstract).
  12. Kim, H. C., and Coauthors, 2017: Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep., 7, 4710. https://doi.org/10.1038/s41598-017-05092-8
  13. Kim, H.-S., J.-B. Huh, P. K. Hopke, T. M. Holsen, and S.-M. Yi, 2007: Characteristics of the major chemical constituents Of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos. Environ., 41, 6762-6770. https://doi.org/10.1016/j.atmosenv.2007.04.060
  14. Kim, Y. J., and K. W. Kim, 2003: Visibility impairment by atmospheric fine particles in an urban area. J. Korean Soc. Atmos. Environ., 19, 99-120 (in Korean with English abstract).
  15. Kim, Y. J. K. W. Kim, S. D. Kim, B. K. Lee, and J. S. Han, 2006: Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmos. Environ., 40, 593-605.
  16. KMA, 2015: Methodologies of Fog Analysis and Forecasting. Korea Meteorological Administration, 24 pp.
  17. KMA, 2018: The standard of automatic meteorological observation instrument, Korea Meteorological Administration, 21 pp.
  18. Lee, A. K. Y., T. Y. Ling, and C. K. Chan, 2008: Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance. Faraday Discuss., 137, 245-263. https://doi.org/10.1039/b704580h
  19. Lee, S., M. Kim, S.-Y. Kim, D.-W. Lee, H. Lee, J. Kim, S. Le, and Y. Liu, 2020: Assessment of long-range transboundary aerosols in Seoul, South Korea from Geostationary Ocean Color Imager (GOCI) and ground-based observations. Environ. Pollut., revised, doi:10.1016/j.envpol.2020.115924.
  20. McCartney, E. J., 1976: Optics of the Atmosphere: Scattering by Molecules and Particles. Wiley, 408 pp.
  21. McInnes, L., M. Bergin, J. Ogren, and S. Schwartz, 1998: Apportionment of light scattering and hygroscopic growth to aerosol composition. Geophys. Res. Lett., 25, 513-516. https://doi.org/10.1029/98GL00127
  22. ME, 2013: Second Metropolitan atmospheric environmental management basic plan. Ministry of Environment of Korea, 107 pp.
  23. ME 2018: Annual report of air quality in Korea 2018, Ministry of Environment of Korea, 327 pp.
  24. Park, J.-S., S.-M. Park, I.-H. Song, H.-J. Shin, and Y.-D. Hong, 2015: Characteristics of visibility impairment by semi-continuous optical and chemical property monitoring of aerosols in Seoul. J. Korean Soc. Atmos. Environ., 31, 319-329 (in Korean with English abstract). https://doi.org/10.5572/KOSAE.2015.31.4.319
  25. Shen, X. J., and Coauthors, 2015: Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos. Environ., 120, 307-316, doi:10.1016/j.atmosenv.2015.09.011.
  26. Skupin, A., A. Ansmann, R. Engelmann, P. Seifert, and T. Muller, 2016: Four-year long-path monitoring of ambient aerosol extinction at a central European urban site: dependence on relative humidity. Atmos. Chem. Phys., 16, 1863-1876, doi:10.5194/acp-16-1863-2016.
  27. Sloan, C. S., and W. H. White, 1986: Visibility: An evolving issue. Environ. Sci. Technol., 20, 760-766. https://doi.org/10.1021/es00150a600
  28. Sun, X., T. Zhao, D. Liu, S. Gong, J. Xu, and X. Ma, 2020: Quantifying the influences of PM2.5 and relative humidity on change of atmospheric visibility over recent winters in an urban area of East China. Atmosphere, 11, 461-472, doi:10.3390/atmos11050461.
  29. Um, H.-H., K.-J. Ha, and S.-S. Lee, 2007: Evaluation of the urban effect of long-term relative humidity and the separation of temperature and water vapor effects. Int. J. Climatol., 27, 1531-1542. https://doi.org/10.1002/joc.1483
  30. Wang, X., R. Zhang, and W. Yu, 2019: The effects of PM2.5 concentrations and relative humidity on atmospheric visibility in Beijing. J. Geophys. Res. Atmos., 124, 2235-2259, doi:10.1029/2018JD029269.
  31. Xiao, S., and Coauthors, 2014: Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmos. Res., 149, 88-95, doi:10.1016/j.atmosres.2014.06.006.
  32. Xiao, Z.-M., Y.-F. Zhang, S.-M. Hong, X.-H. Bi, L. Jiao, Y.-C. Feng, and Y.-Q. Wang, 2011: Estimation of the main factors influencing haze, based on a long-term monitoring campaign in Hangzhou, China. Aerosol Air Qual. Res., 11, 873-882, doi:10.4209/aaqr.2011.04.0052.
  33. Yang, L.-X., D.-C. Wang, S.-H. Cheng, Z. Wang, Y. Zhou, X.-H. Zhou, and W.-X. Wang, 2007: Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Sci. Total Environ., 383, 164-173. https://doi.org/10.1016/j.scitotenv.2007.04.042
  34. Yeo, M. J., Y .S. Im, S. S. Yoo, E. M. Jeon, and Y. P. Kim, 2019: Long-term trend of PM2.5 concentration in Seoul. J. Korean Soc. Atmos. Environ., 35, 438-450, doi:10.5572/KOSAE.2019.35.4.438 (in Korean with English abstract).
  35. Yoon, S.-C., and J. Kim, 2006: Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia. Atmos. Environ., 40, 4328-4338. https://doi.org/10.1016/j.atmosenv.2006.03.036
  36. Zhao, H., H. Che, X. Zhang, Y. Ma, Y. Wang, H. Wang, and Y. Wang, 2013: Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res., 4, 427-434, doi:10.5094/APR.2013.049.