DOI QR코드

DOI QR Code

The effect of human mesenchymal stem cell injection on pain behavior in chronic post-ischemia pain mice

  • Yoo, Sie Hyeon (Department of Anesthesiology and Pain Medicine, Soonchunhyang University Cheonan Hospital, Soonchunhyang University College of Medicine) ;
  • Lee, Sung Hyun (Department of Anesthesiology and Pain Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine) ;
  • Lee, Seunghwan (Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Park, Jae Hong (Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea) ;
  • Lee, Seunghyeon (Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Jin, Heecheol (Department of Anesthesiology and Pain Medicine, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine) ;
  • Park, Hue Jung (Department of Anesthesiology and Pain Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea)
  • Received : 2019.07.15
  • Accepted : 2019.11.01
  • Published : 2020.01.01

Abstract

Background: Neuropathic pain (NP) is considered a clinically incurable condition despite various treatment options due to its diverse causes and complicated disease mechanisms. Since the early 2000s, multipotent human mesenchymal stem cells (hMSCs) have been used in the treatment of NP in animal models. However, the effects of hMSC injections have not been studied in chronic post-ischemia pain (CPIP) mice models. Here, we investigated whether intrathecal (IT) and intrapaw (IP) injections of hMSCs can reduce mechanical allodynia in CPIP model mice. Methods: Seventeen CPIP C57/BL6 mice were selected and randomized into four groups: IT sham (n = 4), IT stem (n = 5), IP sham (n = 4), and IP stem (n = 4). Mice in the IT sham and IT stem groups received an injection of 5 μL saline and 2 × 104 hMSCs, respectively, while mice in the IP sham and IP stem groups received an injection of 5 μL saline and 2 × 105 hMSCs, respectively. Mechanical allodynia was assessed using von Frey filaments from pre-injection to 30 days post-injection. Glial fibrillary acidic protein (GFAP) expression in the spinal cord and dorsal root ganglia were also evaluated. Results: IT and IP injections of hMSCs improved mechanical allodynia. GFAP expression was decreased on day 25 post-injection compared with the sham group. Injections of hMSCs improved allodynia and GFAP expression was decreased compared with the sham group. Conclusions: These results suggested that hMSCs may be also another treatment modality in NP model by ischemia-reperfusion.

Keywords

References

  1. Hatch MN, Cushing TR, Carlson GD, Chang EY. Neuropathic pain and SCI: identification and treatment strategies in the 21st century. J Neurol Sci 2018; 384: 75-83. https://doi.org/10.1016/j.jns.2017.11.018
  2. Siniscalco D, Rossi F, Maione S. Molecular approaches for neuropathic pain treatment. Curr Med Chem 2007; 14: 1783-7. https://doi.org/10.2174/092986707781058913
  3. Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J Neurosci Res 2002; 68: 501-10. https://doi.org/10.1002/jnr.10240
  4. Lindvall O, Kokaia Z. Stem cell therapy for human brain disorders. Kidney Int 2005; 68: 1937-9. https://doi.org/10.1111/j.1523-1755.2005.00623.x
  5. Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders. Nature 2006; 441: 1094-6. https://doi.org/10.1038/nature04960
  6. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, et al. Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg 2007; 104: 944-8. https://doi.org/10.1213/01.ane.0000258021.03211.d0
  7. Meirelles Lda S, Nardi NB. Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci (Landmark Ed) 2009; 14: 4281-98. https://doi.org/10.2741/3528
  8. Amemori T, Jendelova P, Ruzickova K, Arboleda D, Sykova E. Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. Cytotherapy 2010; 12: 212-25. https://doi.org/10.3109/14653240903440103
  9. Schafer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E. Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation 2014; 11: 157. https://doi.org/10.1186/s12974-014-0157-8
  10. Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 2011; 5: 79.
  11. Zhang EJ, Song CH, Ko YK, Lee WH. Intrathecal administration of mesenchymal stem cells reduces the reactive oxygen species and pain behavior in neuropathic rats. Korean J Pain 2014; 27: 239-45. https://doi.org/10.3344/kjp.2014.27.3.239
  12. Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zalfa C, et al. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012; 152: 850-61.
  13. Liu L, Hua Z, Shen J, Yin Y, Yang J, Cheng K, et al. Comparative efficacy of multiple variables of mesenchymal stem cell transplantation for the treatment of neuropathic pain in rats. Mil Med 2017; 182: 175-84. https://doi.org/10.7205/MILMED-D-16-00096
  14. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, et al. Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 2010; 67: 655-69. https://doi.org/10.1007/s00018-009-0202-4
  15. Vaquero J, Zurita M, Oya S, Santos M. Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neurosci Lett 2006; 398: 129-34. https://doi.org/10.1016/j.neulet.2005.12.072
  16. Chen G, Park CK, Xie RG, Ji RR. Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-${\beta}$ secretion. J Clin Invest 2015; 125: 3226-40. https://doi.org/10.1172/JCI80883
  17. Chen C, Chen F, Yao C, Shu S, Feng J, Hu X, et al. Intrathecal injection of human umbilical cord-derived mesenchymal stem cells ameliorates neuropathic pain in rats. Neurochem Res 2016; 41: 3250-60. https://doi.org/10.1007/s11064-016-2051-5
  18. Bonfield TL, Caplan AI. Adult mesenchymal stem cells: an innovative therapeutic for lung diseases. Discov Med 2010; 9: 337-45.
  19. Pan HC, Cheng FC, Chen CJ, Lai SZ, Lee CW, Yang DY, et al. Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 2007; 14: 1089-98. https://doi.org/10.1016/j.jocn.2006.08.008
  20. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM. Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 2004; 111: 116-24. https://doi.org/10.1016/j.pain.2004.06.008
  21. Pisati F, Bossolasco P, Meregalli M, Cova L, Belicchi M, Gavina M, et al. Induction of neurotrophin expression via human adult mesenchymal stem cells: implication for cell therapy in neurodegenerative diseases. Cell Transplant 2007; 16: 41-55. https://doi.org/10.3727/000000007783464443
  22. Siniscalco D, Rossi F, Maione S. Stem cell therapy for neuropathic pain treatment. J Stem Cells Regen Med 2007; 3: 2-11. https://doi.org/10.46582/jsrm.0301002
  23. Coderre TJ, Xanthos DN, Francis L, Bennett GJ. Chronic post-ischemia pain (CPIP): a novel animal model of complex regional pain syndrome-type I (CRPS-I; reflex sympathetic dystrophy) produced by prolonged hindpaw ischemia and reperfusion in the rat. Pain 2004; 112: 94-105. https://doi.org/10.1016/j.pain.2004.08.001
  24. Hylden JL, Wilcox GL. Intrathecal morphine in mice: a new technique. Eur J Pharmacol 1980; 67: 313-6. https://doi.org/10.1016/0014-2999(80)90515-4
  25. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, et al. Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neurosci Lett 2010; 468: 190-4. https://doi.org/10.1016/j.neulet.2009.10.074
  26. Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain 2014; 10: 26.
  27. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient's bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol 2007; 211: 27-35. https://doi.org/10.1002/jcp.20959
  28. Lin CR, Wu PC, Shih HC, Cheng JT, Lu CY, Chou AK, et al. Intrathecal spinal progenitor cell transplantation for the treatment of neuropathic pain. Cell Transplant 2002; 11: 17-24. https://doi.org/10.3727/096020198389744
  29. Eaton MJ, Plunkett JA, Martinez MA, Lopez T, Karmally S, Cejas P, et al. Transplants of neuronal cells bioengineered to synthesize GABA alleviate chronic neuropathic pain. Cell Transplant 1999; 8: 87-101. https://doi.org/10.1177/096368979900800102
  30. Franchi S, Castelli M, Amodeo G, Niada S, Ferrari D, Vescovi A, et al. Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. Biomed Res Int 2014; 2014: 470983. https://doi.org/10.1155/2014/470983
  31. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, et al. Human mesenchymal stem cells as novel neuropathic pain tool. J Stem Cells Regen Med 2010; 6: 127.
  32. Zurita M, Vaquero J. Functional recovery in chronic paraplegia after bone marrow stromal cells transplantation. Neuroreport 2004; 15: 1105-8. https://doi.org/10.1097/00001756-200405190-00004
  33. Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 2012; 67: 1-8. https://doi.org/10.1111/j.1600-0897.2011.01069.x
  34. Knaan-Shanzer S. Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 2014; 32: 603-8. https://doi.org/10.1002/stem.1568
  35. Birklein F, Dimova V. Complex regional pain syndrome-upto-date. Pain Rep 2017; 2: e624. https://doi.org/10.1097/pr9.0000000000000624
  36. Goris RJ. Reflex sympathetic dystrophy: model of a severe regional inflammatory response syndrome. World J Surg 1998; 22: 197-202. https://doi.org/10.1007/s002689900369
  37. Guo W, Wang H, Zou S, Gu M, Watanabe M, Wei F, et al. Bone marrow stromal cells produce long-term pain relief in rat models of persistent pain. Stem Cells 2011; 29: 1294-303. https://doi.org/10.1002/stem.667
  38. Siniscalco D. Transplantation of human mesenchymal stem cells in the study of neuropathic pain. Methods Mol Biol 2010; 617: 337-45. https://doi.org/10.1007/978-1-60327-323-7_25
  39. Musolino PL, Coronel MF, Hokfelt T, Villar MJ. Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci Lett 2007; 418: 97-101. https://doi.org/10.1016/j.neulet.2007.03.001
  40. Naruse K, Sato J, Funakubo M, Hata M, Nakamura N, Kobayashi Y, et al. Transplantation of bone marrow-derived mononuclear cells improves mechanical hyperalgesia, cold allodynia and nerve function in diabetic neuropathy. PLoS One 2011; 6: e27458. https://doi.org/10.1371/journal.pone.0027458
  41. Allen G, Galer BS, Schwartz L. Epidemiology of complex regional pain syndrome: a retrospective chart review of 134 patients. Pain 1999; 80: 539-44. https://doi.org/10.1016/S0304-3959(98)00246-2
  42. Maleki J, LeBel AA, Bennett GJ, Schwartzman RJ. Patterns of spread in complex regional pain syndrome, type I (reflex sympathetic dystrophy). Pain 2000; 88: 259-66. https://doi.org/10.1016/S0304-3959(00)00332-8
  43. Koltzenburg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci 1999; 22: 122-7. https://doi.org/10.1016/S0166-2236(98)01302-2