DOI QR코드

DOI QR Code

Simulation Study of Hydrogen Liquefaction Process Using Helium Refrigeration Cycle

헬륨 냉동사이클을 이용한 수소액화 공정모사 연구

  • Park, Hoey Kyung (Future Environment and Energy Research Institute, Sangmyung University) ;
  • Park, Jin-Soo (Future Environment and Energy Research Institute, Sangmyung University)
  • 박회경 (상명대학교 미래 환경.에너지 연구소) ;
  • 박진수 (상명대학교 미래 환경.에너지 연구소)
  • Received : 2019.12.12
  • Accepted : 2020.02.06
  • Published : 2020.04.10

Abstract

Compared to gaeous hydrogen, liquid hydrogen has approximately 1/800 volume, 800 times higher volumetric energy density at the same pressure, and the advantage of lower explosion risk and easier transportation than gaseous hydrogen. However, hydrogen liquefaction requires larger scale facility investment than simple compression storage method. Therefore, the research on energy-saving hydrogen liquefaction processes is highly necessary. In this study, helium/neon (mole ratio 80 : 20) refrigeration cycle was investigated as the main refrigeration process for hydrogen liquefaction. Process simulation for less energy consumption were carried out using PRO/II with PROVISION V10.2 of AVEVA. For hydrogen liquefaction, energy consumption was compared in three cases: Using a helium/neon refrigerant cycle, a SMR+helium/neon refrigerant cycle, and a C3-MR+helium/neon refrigerant cycle. As a result, the total power consumptions of compressors required to liquefy 1 kg of hydrogen are 16.3, 7.03 and 6.64 kWh, respectively. Therefore, it can be deduced that energy usage is greatly reduced in the hydrogen liquefaction process when the pre-cooling is performed using the SMR process or the C3MR process, which have already been commercialized, rather than using only the helium/neon refrigeration cycle for the hydrogen liquefaction process.

액체 수소는 기체 수소 부피의 약 1/800로 감소시킬 수 있어 동일 압력에서 기체 수소 대비 800배의 체적 에너지 밀도를 가지고 있고, 기체 수소에 비해 폭발 위험성이 낮고 수송이 용이하다는 장점이 있다. 하지만 수소 액화를 위해서는 대규모 시설투자가 필요하고, 단순 압축 저장방식에 비해 많은 에너지가 필요함으로써 경제성 문제가 수반된다. 따라서 에너지 절감형 수소액화공정 연구는 매우 중요하다고 볼 수 있다. 본 연구에서는 수소 액화를 위한 주요 공정으로 헬륨/네온(몰 비 80 : 20) 냉동사이클을 선정하고 화학공정모사기 AVEVA 사의 PRO/II ver. 10.2를 이용하여 공정모사 및 에너지 사용량을 도출하였다. 수소 액화를 위해 헬륨/네온 냉동사이클만을 사용하는 경우, SMR+헬륨/네온 냉동사이클을 사용하는 경우, C3-MR+헬륨/네온 냉동사이클을 사용하는 경우 에너지 사용량을 상호 비교하였다. 그 결과 수소 1 kg을 액화하는데 소요되는 압축기 총 소요 동력은 각각 16.3, 7.03, 6.64 kWh이었다. 헬륨/네온 냉동사이클만을 사용하는 것보다 상용화되어 있는 SMR 공정이나 C3-MR 공정을 사용하여 예냉하는 경우 에너지를 크게 절감할 수 있는 것을 확인하였다.

Keywords

References

  1. H. T. Hwang and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 42-48 (2014). https://doi.org/10.1016/j.coche.2014.04.004
  2. Z. Yanxing, G. Maoqiong, Z. Yusn, and D. Xueqiang, Thermo-dynamics analysis of hydrogen storage base on compressed gaseous hydrogen, liquid, hydrogen and cryo-compressed hydrogen, Int. J. Hydrogen Energy, 44, 16833-16840 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.207
  3. M. Kaur and K. Pal, Review on hydrogen storage materials and methods from an electrochemical viewpoint, J. Energy Storage, 23, 234-249 (2019). https://doi.org/10.1016/j.est.2019.03.020
  4. A. Lahnaoui, C. Wulf, H. Heinrichs, and D. Dalmazzone, Opimizing hydrogen transportation system for mobility via compressed hydrogen trucks, Int. J. Hydrogen Energy, 44, I9302-I9312 (2019).
  5. T. Sinigaglia, F. Lewiski, M. E. S. Martins, and J. C. M Siluk, Production, storage, fuel stations of hydrogen and its utilization in automotive applications - A review, Int. J. Hydrogen Energy, 42(39), 24597-24611 (2017). https://doi.org/10.1016/j.ijhydene.2017.08.063
  6. H. T. Hwang, and A. Varma, Hydrogen storage for fuel cell vehicles, Curr. Opin. Chem. Eng., 5, 44-48 (2014).
  7. B. L. Salvi and K. A. Subramanian, Sustainable development of road transportation sector using hydrogen energy system, Renew. Sustain. Energy Rev., 51, 1132-1155 (2015). https://doi.org/10.1016/j.rser.2015.07.030
  8. J. Andersson and S. Gronkvist, Large-scale storage of hydrogen, Int. J. Hydrogen Energy, 44(23), 11901-11919 (2019). https://doi.org/10.1016/j.ijhydene.2019.03.063
  9. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(29), 15072-15086 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.068
  10. U. Cardella, L. Decker, and H. Klein, Roadmap to economically viable hydrogen liquefaction, Int. J. Hydrogen Energy, 42, 13329-13338 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.068
  11. B. Sorensen, Hydrogen and fuel cells: Emerging technologies and applications, Academic Press, 65-91 (2018).
  12. S. Krasae-in, J. H. Stang, and P. Neksa, Development of large-scale hydrogen liquefaction precesses from 1898 to 2009, Int. J. Hydrogen Energy, 35(10), 4524-4533 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.109
  13. M. S. Sadaghiani and M. Mehrpooya, Introducing and energy analysis of novel cryogenic hydrogen liquefaction process configuration, Int. J. Hydrogen Energy, 42(9), 6033-6050 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.136
  14. C. Yilmaz, M. Kanoglu, A. Bolatturk, and M. Gadalla, Economics of hydrogen production and liquefaction by geothermal energy, Int. J. Hydrogen Energy, 37, 2058-2069 (2012). https://doi.org/10.1016/j.ijhydene.2011.06.037
  15. D. O. Berstad, J. H. Stang, and P. Neksa, Large-scale hydrogen liquefier utilising mixed-refrigerant pre-cooling, Int. J. Hydrogen Energy, 35, 4512-4523 (2010). https://doi.org/10.1016/j.ijhydene.2010.02.001
  16. G. Valenti and E. Macchi, Proposal of an innovative, high-efficiency large-scale hydrogen liquefier, Int. J. Hydrogen Energy, 33, 3166-3121 (2008). https://doi.org/10.1016/j.ijhydene.2008.03.044
  17. C. R. Baker and R. L. Shaner, A study of the efficiency of hydrogen liquefaction, Int. J. Hydrogen Energy, 3, 321-334 (1978). https://doi.org/10.1016/0360-3199(78)90037-X
  18. D. Y. Peng and D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 1197-1203 (1972).
  19. H. W. Wolley, R. B. Scott, and F. G. Brickwedde, Compilation of thermal properties of hydrogen in its various isotopic and ortho-para modifications, J. Res. Nat. Bur. Std., 41, 379-475 (1948). https://doi.org/10.6028/jres.041.037
  20. C. H. Twu, D. Bluck, J. R. Cunningham, and J. E. Coon, A cubic equation of state with a new alpha function and new mixing rule, Fluid Phase Equilib., 69(10), 33-50 (1991). https://doi.org/10.1016/0378-3812(91)90024-2
  21. T. F. Edgar and D. M. Himmelbrau, Optimization of Chemical Processes, McGraw-Hill Book Company, (1997).
  22. W. Wagner, New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations, Cryogenics, 13(8), 470-482 (1973). https://doi.org/10.1016/0011-2275(73)90003-9
  23. A. Van Itterbeek, K. Staes, O. Verbeke, and F. Theeuwes, Vapour pressure of saturated liquid methane, Physica, 30(10), 1896-1900 (1964). https://doi.org/10.1016/0031-8914(64)90068-0
  24. R. D. Goodwin, H. M. Roder, and G. C. Straty, Thermophysical Properties of Ethane, from 90 to 600 K at Pressures to 700 bar, Boulder, Colorado: Dept. of Commerce, National Bureau of Standards, Institute for Basic Standards, Cryogenics Division (1976).
  25. L. I. Dana, A. C. Jenkins, H. E. Burdick, and R. C. Timm, Thermodynamic properties of butane, isobutane, and propane, Refrig. Eng., 12(12), 387-405 (1926).
  26. P. Donaubauer, U. Cardella, L. Decker, and H. Klein, Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction, Chem. Eng. Technol., 42(3), 669-679 (2019). https://doi.org/10.1002/ceat.201800345
  27. I. Lee and I. Moon. Strategies for process and size selection of natural gas liquefaction processes: Specific profit portfolio approach by economic based optimization, Ind. Eng. Chem. Res., 57(17), 5845-5857 (2017).
  28. K. Vink and R. Nagelvoort, 3.6 Comparison of baseload liquefaction processes, in International Conference on Liquefied Natural Gas, Perth, Australia (1998).
  29. Y. E. Yuksel, M. Ozturk, and I. Dincer, Analysis and assessment of a novel hydrogen liquefaction process, Int. J. Hydrogen Energy, 42(16), 11429-11438 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.064