DOI QR코드

DOI QR Code

Spectroscopic Comparison of Photo-oxidation of Outside and Inside of Hair by UVB Irradiation

자외선B 조사에 의한 모발 외부와 내부의 광산화에 관한 분광학적 비교

  • Ha, Byung-Jo (Department of Beauty & Cosmetic Science, Eulji University)
  • 하병조 (을지대학교 미용화장품과학과)
  • Received : 2020.03.11
  • Accepted : 2020.03.25
  • Published : 2020.04.10

Abstract

Hair is made of proteins containing various amino acids. Ultraviolet (UV) radiation is believed to be responsible for the most damaging effects of sunlight, and also plays an important role in hair aging. The purpose of this study was to investigate the changes in morphological and chemical structures after ultraviolet B (UVB) irradiation of human hair. The UVB-irradiated hair showed characteristic morphological and structural changes, compared to those of the normal hair. The result from a scanning electron microscope (SEM) equipped with an energy dispersive X-ray diffractometer (EDX) showed that the scale of UV-irradiated hair appeared to be rough and the amount of oxygen element was higher than that of the normal hair. Fluorescence and three dimensional (3D) topographical images were obtained by a confocal laser scanning microscope (CLSM). In 3D images, the green emission intensity of normal hair was much higher than that of fluorescing UVB-irradiated hair. The intensity of green emission reflects the intrinsic fluorescence of hair protein. Also, a fluorescent imaging method using fluorescamine reagent was used to identify the free amino groups resulting from a peptide bond breakage in UVB-irradiated hair. Strong blue fluorescence of UVB-irradiated hair, which indicates a very high level of amino groups, was observed by CLSM. Therefore, the fluorescamine as an extrinsic fluorescence could provide a useful tool to identify the peptide bond breakage in UVB-irradiated hair. Infrared image mapping was also employed to assess the cross-sections of normal and UVB-irradiated specimens to examine the oxidation of disulfide bonds. The degree of peak areas with strong absorbance for the disulfide mono-oxide was spread from the outside to the inside of hair. The spectroscopic techniques used alone, or in combination, launch new possibilities in the field of hair cosmetics.

모발은 여러 가지 아미노산들을 포함하는 단백질로 이루어져 있다. 자외선(UV)은 태양광선중에서 모발손상에 가장 큰 영향을 미치며 모발 노화에 주된 역할을 한다. 본 연구의 목적은 전자현미경(SEM), 공초점현미경(CLSM) 및 적외선 현미경분광법(IR micro spectroscopy)을 이용하여 정상모발에 UVB를 조사한 후 특징적인 형태학적 및 화학적 구조변화를 알아보는 것이다. 에너지 분산형 X선 분광기가 부착된 전자현미경은 자외선 조사모발의 표면이 정상모발과 비교했을 때 거칠고 높은 산소원소의 함량을 보였다. 형광 및 3차원 위상 이미지를 CLSM으로 분석한 결과 정상모발의 초록색 형광방출이 UVB 조사모발에 비해 매우 높았다. 또한 fluorescamine 형광 염색법을 통해 UVB 조사모발은 정상모발에 비해 펩타이드 결합의 파괴로 생성된 자유 아미노기가 많음을 확인할 수 있었다. UVB 조사모발의 강한 푸른색 형광은 아미노기의 함량이 높다는 것을 의미하며, 이는 CLSM에서도 관찰되었다. 따라서 fluorescamine은 UVB 조사모발에서 펩타이드 결합의 파괴를 관찰하는데 유용한 도구가 될 수 있다. 정상모발과 UVB 조사모발의 단면을 IR micro-spectroscopy를 통해 이미지 맵핑(mapping)한 결과, UVB 조사모발은 정상 모발에 비해 모발의 표면은 물론 내부에 걸쳐 디설파이드 결합(disulfide bond)의 산화가 일어나고 있음을 확인할 수 있었다. 이러한 분광학적 방법은 단독 또는 다른 분석법과 함께 모발화장품의 개발에 응용될 수 있을 것이다.

Keywords

References

  1. A. H. Powitt, Hair Structure and Chemistry Simplified, Milady Publishing Corp., New York (1970).
  2. C. R. Robbins, Chemical and Physical Behavior of Human Hair, 4th Edition, Springer Verlag, New York (2002).
  3. D. P. Harland, R. J. Walls, J. A. Vernon, J. M. Dyer, J. L. Woods, and F. Bell, Three dimensional architecture of macrofibrils in the human scalp hair cortex, J. Struct. Biol., 185, 397-404 (2014). https://doi.org/10.1016/j.jsb.2014.01.010
  4. J. M. Dyer, J. E. Plowman, G. I. Krsinic, S. Deb-Choudhury, H. Koehn, K. R. Millington, and S. Clerens, Proteomic evaluation and location of UVB-induced photo-oxidation in wool, J. Photochem. Photobiol. B. Biol., 98, 118-127 (2010). https://doi.org/10.1016/j.jphotobiol.2009.11.008
  5. C. M. Pande and J. Jschowicz, Hair photodamage-measurement and prevention, J. Soc. Cosmet. Chem., 44, 109-122 (1993).
  6. B. J. Ha, Instrumental analysis of the human hair damage by bleaching treatments, J. Fashion Business, 12, 23-33 (2008).
  7. B. K. Filshie and G. E. Rogers, An electron microscope study of the structure of feather keratin, J. Cell Biol., 13, 1-12 (1962). https://doi.org/10.1083/jcb.13.1.1
  8. L. J. Wolfram and M. K. O. Lindermann, Some observations on hair cuticle, J. Soc. Cosmet. Chem., 22, 839-850 (1971).
  9. R. C. Clay, K. Cook, and J. I. Routh, Studies on the composition of human hair, J. Am. Chem. Soc., 62, 2709-2710(1940). https://doi.org/10.1021/ja01867a030
  10. D. Sanford and F. L. Humoller, Determination of cystine and cysteine in altered human hair fibers, Anal. Chem., 19, 404-406(1947). https://doi.org/10.1021/ac60006a014
  11. J. H. Bradbury, The structure and chemistry of keratin fibers, Adv. Protein Chem., 27, 111-211(1973). https://doi.org/10.1016/S0065-3233(08)60447-7
  12. J. M. Lagarde, P. Peyre, D. Redoules, D. Black, M. Briot, and Y. Gall, Confocal microscopy of hair, Cell Biol. Toxicol., 10, 301-304 (1994). https://doi.org/10.1007/BF00755774
  13. M. Rajadhyaksha, S. Gouzalez, J. M. Zavislan, R. R. Anderson, and R. H. Webb., In vivo confocal scanning laser microscopy of human hair II, J. Invest Dermatol., 113, 293-303 (1999). https://doi.org/10.1046/j.1523-1747.1999.00690.x
  14. A. Nwaneshiudu, C. Kuschal, F. H. Sakamoto, R. Anderson, K. Schwarzenberger, and R. C. Younger, Introduction to confocal microscopy, J. Invest. Dermatol., 132, 1-5 (2012). https://doi.org/10.1038/jid.2011.339
  15. C. M. Pande and J. Jachowicz, Hair photodamage measurement and prevention, J. Soc. Cosmet. Chem., 44, 109-122 (1993).
  16. M. Rajadhyaksha, S. Gouzalez, D. Esterowitz, R. H. Webb, and R. R. Anderson, In vivo confocal scanning laser microscopy of human hair; Melanin provides string contrast, J. Invest. Dermatol., 104, 946-952 (1995). https://doi.org/10.1111/1523-1747.ep12606215
  17. P. Corcuff, P. Gremillet, M. Jourlin, Y. Duvaukt, F. Leroy, and J. L. Leveque, 3D reconstruction of human hair by confocal microscopy, J. Soc. Cosmet. Chem., 44, 1-12 (1993).
  18. S. Udenfriend, S. Stein, P. Bohlen, W. Dairman, W. Leimgruber, and M. Weigele, Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range, Science, 178, 871-872 (1972). https://doi.org/10.1126/science.178.4063.871
  19. A. M. Felix and M. H. Jimenez, Rapid fluorometric determination for completeness in solid phase coupling reactions, Anal. Biochem., 52, 377-381(1973). https://doi.org/10.1016/0003-2697(73)90040-7
  20. M. Zielinski, A new approach to hair surface topography: Fourier transform and fractal analysis, J. Soc. Cosmet. Chem., 40, 173-189 (1989).
  21. M. A. Mujeeb and M. K. Zafar, FTIR spectroscopic analysis of human hair, Int. J. Innovative Res. in Sci. Eng. and Tech., 6, 9327-9332(2017).
  22. D. J. Lyman and J. Murray-Wijelath, Fourier transform infrared attenuated total refraction analysis of human hair: Comparison of human hair from breast cancer patients with hair from healthy subjects, Appl. Spectrosc., 59, 26-32 (2005). https://doi.org/10.1366/0003702052940440
  23. W. Akhtar, H. G. Edwards, and D. W. Farwell, Fourier-transform raman spectroscopic study of human hair, Spectrochim. Acta, Part A. Mol. Biomol. Spectrosc., 53, 1021-1031 (1997). https://doi.org/10.1016/S1386-1425(97)00055-3
  24. C. M. Carr and D. M. Lewis, An FTIR spectroscopic study of the photodegradation and thermal degradation of wool, J. Soc. Dye. Colour, 109, 21-24 (1993). https://doi.org/10.1111/j.1478-4408.1993.tb01496.x
  25. M. Joy and D. M. Lewis, The use of Fourier transform infra-red spectroscopy in the study of the surface chemistry of hair fibres, Int. J. Cosmet. Sci., 13, 249-261 (1991). https://doi.org/10.1111/j.1467-2494.1991.tb00565.x
  26. J. Strassburger, Quantitative fourier transform infrared spectroscopy of oxidized hair, J. Soc. Cosmet. Chem., 36, 61-74 (1985).
  27. V. Signori and D. M. Lewis, FTIR investigation of the damage produced on human hair by weathering and bleaching processes: Implementation of different sampling techniques and data processing, Int. J. Cosmet. Sci., 19, 1-13 (1997). https://doi.org/10.1111/j.1467-2494.1997.tb00161.x
  28. R. Mendelsohn, M. E. Rerek, and D. J. Moore, Infrared spectroscopy and microscopic imaging of stratum corneum models and skin invited lecture, Phys. Chem. Chem. Phys., 2, 4651-4657 (2000). https://doi.org/10.1039/b003861j