DOI QR코드

DOI QR Code

Effect of Silane Coupling Agent on Adhesion Properties between Hydrophobic UV-curable Urethane Acrylate and Acrylic PSA

소수성 UV 경화형 우레탄 아크릴레이트와 아크릴 점착제 사이의 계면 부착력 향상을 위한 에폭시 실란의 영향

  • Noh, Jieun (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Byeon, Minseon (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Cho, Tae Yeun (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Ham, Dong Seok (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology) ;
  • Cho, Seong-Keun (Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology)
  • 노지은 (한국화학연구원 화학소재솔루션센터) ;
  • 변민선 (한국화학연구원 화학소재솔루션센터) ;
  • 조태연 (한국화학연구원 화학소재솔루션센터) ;
  • 함동석 (한국화학연구원 화학소재솔루션센터) ;
  • 조성근 (한국화학연구원 화학소재솔루션센터)
  • Received : 2020.01.23
  • Accepted : 2020.03.09
  • Published : 2020.04.10

Abstract

In this study, an adhesive tape with water and impact resistance for mobile devices was developed using a UV-curable urethane acrylate based polymer as a substrate. The substrate fabricated by UV-curable materials shows hydrophobicity and poor wettability, which significantly deteriorates the interface-adhesions between the substrate and acrylic adhesive. In order to improve the interface adhesion, 3-glycidoxy-propyl trimethoxysilane (GPTMS), a silane coupling agent having epoxy functional groups, was selected and incorporated into UV-curable urethane acrylate based polymer resins in various contents. The changes of the chemical composition according to the contents of GPTMS was studied with Fourier-transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) to know the surface bonding properties. Also mechanical properties of the substrate were characterized by tensile strength, gel fraction and water contact angle measurements. The peel strengths at 180° and 90° were measured to compare the adhesion between the substrate and adhesive according to the silane coupling agent contents. The mechanical strength of the urethane acrylate adhesive tape decreased as the silane coupling agent increased, but the adhesion between the substrate and adhesives increased remarkably at an appropriate content of 0.5~1 wt%.

본 연구에서는 모바일 기기용 방수 및 내충격 기능성 소재로 사용되는 우레탄-아크릴레이트 점착테이프의 부착력 향상 연구를 수행하였다. 소수성 표면을 가진 기재(substrate) 필름과 아크릴 점착제 사이의 젖음성 및 밀착력 하락으로 인한 점착테이프의 물성 저하를 개선하기 위해, 에폭시 작용기를 가진 실란 커플링제인 3-glycidoxy-propyl trimethoxysilane (GPTMS)을 UV 경화형 우레탄-아크릴레이트 수지에 함량별로 첨가하여 필름을 제조하였다. FT-IR, EDS, XPS를 이용하여 실란 커플링제의 함량에 따른 기재 필름의 표면 결합 특성을 확인하였고, 인장강도, 접촉각, 겔 분율(gel fraction)을 측정하여 기계적 물성 변화를 비교하였다. 또한 우레탄-아크릴레이트 필름의 양쪽에 아크릴 점착제를 코팅하여 양면 점착테이프를 제조하고, 180, 90° 박리강도(peel strength)를 측정하여 실란 커플링제 함량별로 기재 필름과 점착제 사이의 접착력(밀착력)을 비교하였다. 실란 커플링제 함량이 증가할수록 기재필름의 다양한 물성의 변화를 보였지만, 0.5~1 wt% 정도의 첨가는 기타 물성의 손실 없이 효과적으로 점착층과의 계면 부착력을 향상시켰다.

Keywords

References

  1. N. Kim, J. Kim, H. S. Lim, and S. H. Kim, Technological trend of special coating materials for surface functionalization, Journal of Adhesion and Interface, 18(1), 33-38 (2017). https://doi.org/10.17702/jai.2017.18.1.33
  2. N. Kim, J. Kim, H. S. Lim, and S. H. Kim, Technological trend of special coating materials for surface functionalization, Journal of Adhesion and Interface, 18(2), 82-88 (2017).
  3. M. J. Choi, B. Y. Jeong, J. M. Cheon, K. Park, and J. H. Chun, Synthesis and characterization of waterborne polyurethane for water resistance, Journal of Adhesion and Interface, 18(1), 8-12 (2017). https://doi.org/10.17702/jai.2017.18.1.8
  4. F. L. Jin, M. Zhao, M. Park, and S. J. Park, Recent trends of foaming in polymer processing: A review, Polymers, 11(6), 953-976 (2019). https://doi.org/10.3390/polym11060953
  5. X. Hu, E. M. Wouterson, and M. Liu, Handbook of Manufacturing Engineering and Technology, A. Y. C. Nee, pp 125-168, Springer, London (2014).
  6. N. V. Gama, A. Ferreira, and A. B. Timmons, Polyurethane foams: Past, present, and future, Materials (Basel), 11(10), 1841-1875 (2018). https://doi.org/10.3390/ma11101841
  7. K. Fukuzawa, S. Node, T. Yamagishi, and Y. Chishima, Proceedings of the International Adhesion Symposium on Adhesion Science and Technology, Yokohama, Japan (1994).
  8. D. Eaves, Handbook of Polymer Foams, 289, Rapra Technology Ltd., Shawbury, UK (2004).
  9. W. V. Titow, PVC Technology, 146, Rapra Technology Ltd., Shawbury, UK (2001).
  10. S. S. Baek, S. W. Lee, and S. H. Hwang, Synthesis of UV curable 4,4'-Thiodibenzenethiol-based epoxy acrylate and their refractive index behavior, Polymer (Korea), 37(1), 121-126 (2013). https://doi.org/10.7317/pk.2013.37.1.121
  11. J. W. Won, J. H. Park, J. Y. Kim, Y. J. Yoon, K. D. Jang, M. C. Park, J. H. Chun, and J. S. Hwang, Synthesis and characterization of fluorine-induced, UV curable urethane acrylate oligomers, Journal of Adhesion and Interface, 18(3), 127-133 (2017).
  12. J. Wen, C. Feng, H. Li, X. Liu, F. Ding, H. Li, and C. Huang, UV-curable hydrophobic coatings of functionalized carbon microspheres with good mechanical properties and corrosion resistance, Coatings, 8, 439 (2018). https://doi.org/10.3390/coatings8120439
  13. T. Zhanga, W. Wua, X. Wanga, and Y. Mub, Effect of average functionality on properties of UV-curable waterborne polyurethane-acrylate, Prog. Org. Coat., 68, 201-207 (2010). https://doi.org/10.1016/j.porgcoat.2010.02.004
  14. J. G. Quini and G. Marinucci, Polyurethane structural adhesives applied in automotive composite joints, Mat. Res., 15(3), 434-439 (2012). https://doi.org/10.1590/S1516-14392012005000042
  15. F. C. Campbell, Manufacturing Processes for Advanced Composites, 241-301 (2004).
  16. J. P. Muller, E. Mitzner, H. Goering, and J. Gahde, Surface modification of polyurethanes by multicomponent polyaddition reaction, J. Mater. Sci. Lett., 17(2), 115-118 (1998). https://doi.org/10.1023/A:1006578615886
  17. Y. Ozdemir, N. Hasirci, and K. Serbetci, Oxygen plasma modification of polyurethane membranes, J. Mater. Sci.: Mater. M., 13(12), 1147-1152 (2002). https://doi.org/10.1023/A:1021185803716
  18. M. J. Shenton, M. C. Lovell-Hoare, and G. C. Stevens, Adhesion enhancement of polymer surfaces by atmospheric plasma treatment, J. Phys. D: Appl. Phys., 34, 2754-2760 (2001). https://doi.org/10.1088/0022-3727/34/18/307
  19. E. P. Plueddemann, Silane adhesion promoters in coatings, Prog. Org. Coat., 11(3), 297-308 (1983). https://doi.org/10.1016/0033-0655(83)80012-0
  20. Y. Zhao, W. Li, X. Jiang, F. Li, X. Li, W. Zhang, J. S. Jiang, J. Liu, K. Ariga, and M. Hu, Coordination polymer nanoglue: Robust adhesion based on collective lamellar stacking of nanoplates, ACS Nano, 11(4), 3662-3670 (2017). https://doi.org/10.1021/acsnano.6b08068
  21. Z. Yao, M. Cui, Z. Zhang, L. Wu, and T. Xu, Silane cross-linked sulfonted poly(ether ketone/ether benzimidazole)s for fuel cell applications, Polymers, 9, 631-645 (2017). https://doi.org/10.3390/polym9120631
  22. F. Najafi, B. S. Hadavand, and A. Pournamdar, Trimethoxysilane-assisted UV-curable urethane acrylate as clear coating: From synthesis to properties, Prog. Colloid Polym. Sci., 295, 1717-1728 (2017). https://doi.org/10.1007/s00396-017-4139-0