DOI QR코드

DOI QR Code

리튬 불소계 화합물과 4차 암모늄염을 사용한 대전방지제의 표면저항 및 대전방지필름의 특성 평가

Surface Resistance of Antistatic Agent Using Lithium-Fluoro Compound and Quaternary Ammonium Salt and Characteristics Evaluation of Antistatic Film

  • 투고 : 2020.02.04
  • 심사 : 2020.04.03
  • 발행 : 2020.04.29

초록

낮은 표면저항값과 높은 투과도가 요구되는 LCD용 대전방지필름에 사용할 수 있는 무색상을 지닌 대전방지제를 개발하였다. 리튬 불소계 화합물과 4차 암모늄염 중에서 전기전도도를 바탕으로 대전방지 물질을 선정하고 대전방지제를 제조하여 표면저항값을 측정하였다. 그 결과 대체적으로 전도도가 높은 물질이 비교적 낮은 표면저항값 즉 상대적으로 양호한 대전방지 성능을 보여주고 있음을 알 수 있었다. 선정된 대전방지 물질을 중심으로 최적의 대전방지제를 제조하는 배합비를 실험계획법을 통하여 수립하고 각 인자들이 미치는 영향을 분석하였다. 대전방지 물질로 사용한 리튬 불소계 화합물의 사용량이 많을수록, 상대적으로 다관능기를 갖는 올리고머의 사용비율이 높을수록 표면저항값이 작게 나타났다. 4차 암모늄염은 리튬 불소계 화합물의 대전방지 성능을 증가시켰으나 사용량에 따른 영향은 상대적으로 크지 않았다. 대전방지용 PET 필름을 제조한 후 특성을 평가한 결과 낮은 표면저항값(<109 Ω/sq.) 및 높은 투과도(>92%), 낮은 헤이즈(<0.5%) 및 높은 백색도(L>95)를 나타내었다. 또한 고온 고습의 조건하에서도 10% 이내의 안정적인 표면저항 변화율을 보임으로서 대전방지필름의 신뢰도가 아주 우수함을 확인하였다.

A colorless antistatic agent was prepared for use in antistatic films for liquid crystal displays (LCDs) requiring low surface resistance and high transmittance. Among various lithium-fluoro compounds and quaternary ammonium salts, antistatic materials were selected based on their electrical conductivity, and antistatic agents were prepared to measure the surface resistance. As a result, the material with high conductivity showed a relatively low surface resistance, i.e., relatively good antistatic performance. Based on the antistatic materials selected, the formulation ratio for producing the best antistatic agent was established through the experimental design method and the effects of each factor were analyzed. The higher the use of lithium- fluoro compounds as antistatic materials, the higher the ratio of oligomer use with multi-functional groups, and the smaller the surface resistance. The quaternary ammonium salts increased the antistatic performance of the lithium-fluoro compounds, but the effects of the amount used were not relatively large. After manufacturing the antistatic PET film, the properties of the antistatic film showed low surface resistance values (<109 Ω/sq.), high permeability (>92%), low haze (<0.5%), and high whiteness (L>95). In addition, the antistatic film reliability was found to be excellent by showing a stable surface-resistance change rate of less than 10%, even under high temperature and high humidity conditions.

키워드

참고문헌

  1. H. K. Gurakin, A. C. Turan, and H. Deligoza, "Synthesis of a novel polyester-ether copolymer and its derivatives as antistatic additives for thermoplastic films", Polymer Testing, Vol. 81, Jan. 2020. DOI:https://doi.org/10.1016/j.polymertesting.2019.106214
  2. A. Tsurumaki, T. Iwata, M. Tokuda, H. Minami, M. A. Navarra, and H. Ohno, "Polymerized ionic liquids as durable antistatic agents for polyether-based polyurethanes", Electrochimica Acta, Vol. 308, pp 115-120, Jun. 2019. DOI: https://doi.org/10.1016/j.electacta.2019.04.031
  3. T. Iwata, A. Tsurumaki, S. Tajima, and H. Ono, "Fixation of ionic liquids into polyether-based polyurethane films to maintain long-term antistatic properties", Polymer, Vol. 55, No. 10, pp. 2501-2504, May 2014. DOI: https://doi.org/10.1016/j.polymer.2014.03.028
  4. T. Kobayashi, B. A. Wood, A. Takemura, and H. Ono, "Antistatic performance and morphological observation of ternary blends of poly(ethylene terephthalate), poly(ether esteramide), and Na-neutralized poly(ethylene -co-methacrylic acid) opolymers", Journal of Electrostatics, Vol. 64, No. 6, pp. 377-385, Jun. 2006. DOI: https://doi.org/10.1016/j.elstat.2005.09.004
  5. J. T. Whang, "Development trend of polymer antistatic agent", Proceedings of Autumn Conference on the Korean Polymer Society, Vol. 43, No.1, pp.52-52, Oct. 2018. http://www.dbpia.co.kr/Article/NODE07545322
  6. S. W. Park, S. Y. See, M. Y. Seo, J. H. Seo, Y. S. Shin, and G. Koo, "A study on the synthesis of durable antistatic agent using water soluble polymers and amines", Journal of the Korean Society of Dyers and Finishers, Vol.13, No. 6, pp.55-69, 2001. http://www.dbpia.co.kr/Article/NODE01798405
  7. Z. M. Xue, C. Q. Ji, W. Zhou, C. H. Chen, "A new lithium salt with 3-fluoro-1,2-benzenediolato and oxalato complexes of boron for lithium battery electrolytes", Journal of Power Sources, Vol. 195, No. 11, pp. 3689-3692, Jun. 2010. DOI: https://doi.org/10.1016/j.jpowsour.2009.12.049
  8. Z. M. Xue, B. H. Zhao, C. H. Chen, "A new lithium salt with 3-fluoro-1,2-benzenediolato and lithium tetrafluoroborate for lithium battery for lithium battery electrolytes", Journal of Power Sources, Vol. 196, No. 15, pp. 6478-6482, Aug. 2011. DOI: https://doi.org/10.1016/j.jpowsour.2011.04.011
  9. J. H. Kim, and J. W. Ha, "A study on the preparation and application of uv-curing antistatic agent", Proceedings of 2004 Spring Conference on the Korea Academia-Industrial cooperation Society, pp.264-266, Jun. 2004. http://www.dbpia.co.kr/Article/NODE07215790
  10. Y Kugimoto, A. Wakabayashi, T. Dobashi, O.samu Ohnishi, T. K. Doi, and S. Kurokawa, "Preparation and characterization of composite coatings containing a quaternary ammonium salt as an anti-static agent", Progress in Organic Coatings, Vol.92, pp. 80-84, Mar. 2016. DOI: https://doi.org/10.1016/j.porgcoat.2015.11.013
  11. L. Wu, Y. Ge, L. Zhang, D. Yu, M. Wu, and H. Ni, "Enhanced electrical conductivity and competent mechanical properties of polyaniline/polyacrylate(PANI/PA) composites for antistatic finishing prepared at the aid of polymeric stabilizer", Progress in Organic Coatings, Vol. 125, pp. 99-108, Dec. 2018. DOI: https://doi.org/10.1016/j.porgcoat.2018.09.002
  12. H. Nikoofard, and M. Hosseini, "Study of electrical conductivity and thermochemical stability of oligo (3,4-ethylenedioxythiophene) at temperature range of 50-400 K", Synthetic Metals, Vol. 256, Article 116118, Oct. 2019. DOI: https://doi.org/10.1016/j.synthmet.2019.116118
  13. L&J TECH Homepage, Available From: http://lnjcompany.com/antistatic-coating (accessed Mar, 19, 2020)