DOI QR코드

DOI QR Code

Synthesis and Characterization of Hydrotalcite/Graphene Oxide Containing Benzoate for Corrosion Protection of Carbon Steel

  • Nguyen, Thuy Duong (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Tran, Boi An (Institute of Chemical Technology, Vietnam Academy of Science and Technology) ;
  • Vu, Ke Oanh (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Nguyen, Anh Son (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Trinh, Anh Truc (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Pham, Gia Vu (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • To, Thi Xuan Hang (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Phan, Thanh Thao (Institute of Chemical Technology, Vietnam Academy of Science and Technology)
  • Received : 2020.02.28
  • Accepted : 2020.03.30
  • Published : 2020.04.29

Abstract

This work examined the corrosion protection performance of benzoate loaded hydrotalcite/graphene oxide (HT/GO-BZ) for carbon steel. HT/GO-BZ was fabricated by the co-precipitation method and characterized by infrared spectroscopy, X-ray diffraction, and scanning electronic microscopy. The corrosion inhibition action of HT/GO-BZ on carbon steel in 0.1 M NaCl solution was evaluated by electrochemical measurements. The benzoate content in HT/GO-BZ was determined by UV-Vis spectroscopy. Subsequently, the effect of HT/GO-BZ on the corrosion resistance of the water-based epoxy coating was investigated by the salt spray test. The obtained results demonstrated the intercalation of benzoate and GO in the hydrotalcite structure. The benzoate content in HT/GO-BZ was about 16%. The polarization curves of the carbon steel electrode revealed anodic corrosion inhibition activity of HT/GO-BZ and the inhibition efficiency was about 95.2% at a concentration of 3g/L. The GO present in HT/GO-BZ enhanced the inhibition effect of HT-BZ. The presence of HT/GO-BZ improved the corrosion resistance of the waterborne epoxy coating.

Keywords

References

  1. G. Boisier, N. Portail, and N. Pebere, Electrochim. Acta, 55, 6182 (2010). https://doi.org/10.1016/j.electacta.2009.10.080
  2. U. Rammelt, S. Kohler, and G. Reinhard, Electrochim. Acta, 53, 6968 (2008). https://doi.org/10.1016/j.electacta.2008.01.004
  3. C. Georges, E. Rocca, and P. Steinmetz, Electrochim. Acta, 53, 4839 (2008). https://doi.org/10.1016/j.electacta.2008.01.073
  4. U. Rammelt, S. Koehler, and G. Reinhard, Corros. Sci., 50, 1659 (2008). http://doi.org/10.1016/j.corsci.2008.02.016
  5. J. Zhao and G. Chen, Electrochim. Acta, 69, 247 (2012). https://doi.org/10.1016/j.electacta.2012.02.101
  6. G. Blustein, J. Rodriguez, R. Romanogli, and C. F. Zinola, Corros. Sci., 47, 369 (2005). https://doi.org/10.1016/j.corsci.2004.06.009
  7. S. P. V. Mahajanam and R. G. Buchheit, Corrosion, 64, 230 (2008). https://doi.org/10.5006/1.3278468
  8. J. Tedim, A. Kuznetsova, A. N. Salak, F. Montemor, D. Snihirova, M. Pilz, M. L. Zheludkevich, and M. G. S. Ferreira, Corros. Sci., 55, 1 (2012). https://doi.org/10.1016/j.corsci.2011.10.003
  9. Y. Wang and D. Zhang, Mater. Res. Bull., 46, 1963 (2011). https://doi.org/10.1016/j.materresbull.2011.07.021
  10. B. Wu, J. Zuo, B. Dong, F. Xing, and C. Luo, Appl. Clay Sci., 180, 105181 (2019). https://doi.org/10.1016/j.clay.2019.105181
  11. C.-Y. Ho, S.-M. Huang, S.-T. Lee, and Y.-J. Chang, Appl. Surf. Sci., 477, 226 (2019). https://doi.org/10.1016/j.apsusc.2017.10.129
  12. B. Ramezanzadeh, G. Bahlakeh, M. H. M. Moghadam, and R. Miraftab, Chem. Eng. J., 335, 737 (2018). https://doi.org/10.1016/j.cej.2017.11.019
  13. M. G. Sari, M. Shamshiri, and B. Ramezanzadeh, Corros. Sci., 129, 38 (2017). https://doi.org/10.1016/j.corsci.2017.09.024
  14. N. Parhizkar, B. Ramezanzadeh, and T. Shahrabi, Appl. Surf. Sci., 439, 45 (2018). https://doi.org/10.1016/j.apsusc.2017.12.240
  15. F. Jiang, W. Zhao, Y. Wu, Y. Wu, G. Liu, J. Dong, and K. Zhou, Appl. Surf. Sci., 479, 963 (2019). https://doi.org/10.1016/j.apsusc.2019.02.193
  16. D. Yu, S. Wen, J. Yang, J. Wang, Y. Chen, J. Luo, and Y. Wu, Surf. Coat. Technol., 326A, 207 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.053
  17. T. D. Nguyen, T. X. H. To, J. Gervasi, Y. Paint, M. Gonon, M.-G. Olivier, Prog. Org. Coat., 124, 256 (2018). https://doi.org/10.1016/j.porgcoat.2017.12.006
  18. T. D. Nguyen, B. A. Tran, K. O. Vu, A. S. Nguyen, A. T. Trinh, G. V. Pham, T. X. H. To, M. V. Phan, and T. T. Phan, J. Coat. Technol. Res., 16, 585 (2019). https://doi.org/10.1007/s11998-018-0139-3
  19. A. Esmaeili and M. H. Entezari, J. Colloid Interf. Sci., 432, 19 (2014). https://doi.org/10.1016/j.jcis.2014.06.055
  20. T. D. Nguyen, T. X. H. To, A. Nicolay, Y. Paint, and M. -G. Olivier, Prog. Org. Coat., 101, 331 (2016). https://doi.org/10.1016/j.porgcoat.2016.08.021
  21. P. Kovar, M. Pospisil, M. Nocchetti, P. Capkova, and K. Melanova, J. Mol. Model., 13, 937 (2007). https://doi.org/10.1007/s00894-007-0217-4
  22. T. X. H. To, A. T. Trinh, T. D. Nguyen, G. V. Pham, and H. Thai, Appl. Clay Sci., 67-68, 18 (2012). https://doi.org/10.1016/j.clay.2012.07.004
  23. Y. Wang, Z. Wang, X. Wu, X. Liu, and M. Li, Electrochim. Acta, 192, 196 (2016). https://doi.org/10.1016/j.electacta.2016.01.201
  24. M. Outirite, M. Lagrenee, M. Lebrini, M. Traisnel, C. Jama, H. Vezin, and F. Bentiss, Electrochim. Acta, 55, 1670 (2010). https://doi.org/10.1016/j.electacta.2009.10.048