DOI QR코드

DOI QR Code

Effect of Oxide Particles Addition to Powder Coating on Corrosion Resistance of Steel Used as Marine Equipments

조선·해양 기자재용 강재의 내식성에 미치는 분체도장 중 산화물 첨가의 영향

  • Park, Jin-seong (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Ryu, Seung Min (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Jeong, Yeong Jae (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 박진성 (순천대학교 신소재공학과) ;
  • 류승민 (순천대학교 신소재공학과) ;
  • 정영재 (순천대학교 신소재공학과) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2020.03.27
  • Accepted : 2020.04.21
  • Published : 2020.04.29

Abstract

The demand for powder-coated steel used in the marine industry is increasing owing to their superior corrosion resistance. However, the powder coatings used in commercial products can deteriorate easily by the penetration of brine. In an attempt to suppress brine penetration into the powder coating and significantly increase the corrosion resistance, three types of oxide particles were added to the coating. Electrochemical impedance spectroscopy tests in 3.5% NaCl solution were performed to evaluate the corrosion behaviors of the powder coating with oxide particles. The results showed that the addition of SiO2 particles to a powder coating severely decreased the corrosion resistance due to the easy detachment of agglomerated SiO2 particles with a coarse size from the coating layer. In contrast, the TiO2 and SnO2-added coatings showed better corrosion resistance, and the TiO2-added coating performed best in the test conducted at room temperature. However, conflicting results were obtained from tests conducted at a higher temperature, which may be attributed to the effective suppression of brine penetration by the fine SnO2 particles uniformly distributed in the coating.

Keywords

References

  1. S. Hu, M. Muhammad, M. Wang, R. Ma, A. Du, Y. Fan, X. Cao, and X. Zhao, Mater. Lett., 265, 127256 (2020). https://doi.org/10.1016/j.matlet.2019.127256
  2. S. M. A. Shibli and F. Chacko, Appl. Surf. Sci., 257, 3111 (2011). https://doi.org/10.1016/j.apsusc.2010.10.125
  3. J. S. Park, H. J. Lee, and S. J. Kim, Korean J. Mater. Res., 28, 286 (2018). https://doi.org/10.3740/MRSK.2018.28.5.286
  4. J. W. Lee, B. R. Park, and S. J. Kim, Korean J. Met. Mater., 57, 77 (2019). http://dx.doi.org/10.3365/KJMM.2019.57.2.77
  5. R. Sako and J. Sakai, Surf. Coating Tech., 219, 42 (2013). https://doi.org/10.1016/j.surfcoat.2012.12.050
  6. Y. M. Lee and J. W. Baek, A Case Study on Life Cycle Cost of Coating System for Steel Railway Bridges (2009). http://www.yooshin.co.kr/upload/16_9_0.pdf
  7. X. Zhang, R. Ma, A. Du, Q. Liu, Y. Fan, X. Zhao, J. Wu, and X. Cao, Appl. Surf. Sci., 484, 814 (2019). https://doi.org/10.1016/j.apsusc.2019.04.158
  8. D. Zhu and W. J. V. Ooij, Prog. Org. Coat., 49, 42 (2004). https://doi.org/10.1016/j.porgcoat.2003.08.009
  9. M. Smikalla, A. Mescher, P. Walzel, and N. A. Urbanetz, Int. J. Pharm., 405, 122 (2011). https://doi.org/10.1016/j.ijpharm.2010.12.001
  10. Z. Du, S. Wen, J. Wang, C. Yin, D. Yu, and J. Luo, J. Mater. Sci. Chem. Eng., 4, 54 (2016). https://doi.org/10.4236/msce.2016.43007
  11. Y. Takeshita, T. Sawada, T. Handa, Y. Watanuki, and T. Kudo, Prog. Org. Coat., 75, 584 (2012). https://doi.org/10.1016/j.porgcoat.2012.07.003
  12. E. Dogan and A. E. Acar, Prog. Org. Coat., 76, 513 (2013). https://doi.org/10.1016/j.porgcoat.2012.11.007
  13. S. Sathiyanarayanan, S. S. Azim, and G. Venkatachari, Appl. Surf. Sci., 253, 2113 (2006). https://doi.org/10.1016/j.apsusc.2006.04.005
  14. X. Lv, K. Wang, Y. He, and X. Cui, Constr. Build. Mater., 214, 441 (2019). https://doi.org/10.1016/j.apsusc.2006.04.005
  15. S. Zhang, J. You, C. Kennes, Z. Cheng, J. Ye, D. Chen, J. Chen, and L. Wang, Chem. Eng. J., 334, 2625 (2018). https://doi.org/10.1016/j.cej.2017.11.014
  16. Q. Zhou and Y. Wang, Prog. Org. Coat., 76, 1674 (2013). https://doi.org/10.1016/j.porgcoat.2013.07.018
  17. F. Deflorian and S. Rossi, Electrochim. Acta, 51, 1736 (2006). https://doi.org/10.1016/j.electacta.2005.02.145
  18. A. N. Pham and T. D. Waite, Geochim. Cosmochim. Ac, 72, 3616 (2008). https://doi.org/10.1016/j.gca.2008.05.032
  19. A. P. Grosvenor, B. A. Kobe, and N. S. Mcintyre, Surf. Sci., 565, 151 (2004). https://doi.org/10.1016/j.susc.2004.06.210
  20. F. P. Moreno, M. A. Jakab, N. Tailleart, M. Goldman, and J. R. Scully, Mater. Today, 11, 14 (2008). https://doi.org/10.1016/S1369-7021(08)70203-7
  21. J. H. Park, T. H. Yun, K. Y. Kim, Y. K. Song, and J. M. Park, Prog. Org. Coat., 74, 25 (2012). https://doi.org/10.1016/j.porgcoat.2011.09.012
  22. T. N. Lo, T. S. Lui, and E. Chang, Mater. Trans, 45, 3065 (2004). https://doi.org/10.2320/matertrans.45.3065