DOI QR코드

DOI QR Code

Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure

  • Lee, Hyeonjong (Department of Prosthodontics, School of Dentistry, PU.S.A.n National University) ;
  • Park, Si-Myung (Center for Medical Robotics, Korea Institute of Science and Technology) ;
  • Noh, Kwantae (Department of Prosthodontics, School of Dentistry, Kyung Hee University) ;
  • Ahn, Su-Jin (Department of Biomaterials & Prosthodontics, Kyung Hee University Hospital at Gangdong, School of Dentistry, Kyung Hee University) ;
  • Shin, Sangkyun (School of Mechanical Engineering, Kyungpook National University) ;
  • Noh, Gunwoo (School of Mechanical Engineering, Kyungpook National University)
  • Received : 2019.04.29
  • Accepted : 2019.11.27
  • Published : 2020.05.25

Abstract

Considerable controversy surrounds the choice of the best abutment type for implant prosthetics. The two most common structures are hex and non-hex abutments. The non-hex abutment typically furnishes a larger contact area between itself and the implant than that provided by a hex structure. However, when a hex abutment is loaded, the position of its contact area may be deeper than that of a non-hex abutment. Hence, the purpose of this study is to determine the different biomechanical behaviors of an internal bone-level implant based on the abutment type-hex or non-hex-and clinical crown length under static and cyclic loadings using finite element analysis (FEA). The hex structure was found to increase the implant and abutment stability more than the nonhex structure among several criteria. The use of the hex structure resulted in a smaller volume of bone tissues being at risk of hypertrophy and fatigue failure. It also reduced micromovement (separation) between the implant components, which is significantly related to the pumping effect and possible inflammation. Both static and fatigue analyses, used to examine short- and long-term stability, demonstrated the advantages of the hex abutment over the non-hex type for the stability of the implant components. Moreover, although its impact was not as significant as that of the abutment type, a large crown-implant ratio (CIR) increased bone strain and stress in the implant components, particularly under oblique loading.

Keywords

Acknowledgement

The research was supported by the Basic Science Research Program (Grant No. 2018R1D1A1B07049789) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

References

  1. ABAQUS/Safe User's Manual (2001), HKS, Inc. Pawtucket.
  2. Amaral, C.F., Gomes, R.S., Garcia, R.C.R. and Cury, A.A. D.B. (2018), "Stress distribution of single-implant-retained overdenture reinforced with a framework: A finite element analysis study", J. Prosthet. Dent., 119(5), 791-796. https://doi.org/10.1016/j.prosdent.2017.07.016.
  3. Amzallag, C., Gerey, J. P., Robert, J. L. and Bahuaud, J. (1994), "Standardization of the rainflow counting method for fatigue analysis", Int.l J. Fatigue, 16(4), 287-293. https://doi.org/10.1016/0142-1123(94)90343-3.
  4. Apicella, D., Veltri, M., Balleri, P., Apicella, A. and Ferrari, M. (2011), "Influence of abutment material on the fracture strength and failure modes of abutment-fixture assemblies when loaded in a bio-faithful simulation", Clin. Oral Implants Res., 22(2), 182-188. https://doi.org/10.1111/j.1600-0501.2010.01979.x.
  5. Barbier, L., Sloten, J. V., Krzesinski, G. and Van Der Perre, E. S. G. (1998), "Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog", J. Oral Rehabil., 25(11), 847-858. https://doi.org/10.1046/j.1365-2842.1998.00318.x.
  6. Bergkvist, G., Simonsson, K., Rydberg, K., Johansson, F. and Derand, T. (2008), "A finite element analysis of stress distribution in bone tissue surrounding uncoupled or splinted dental implants", Clin. Implant Dent. Relat. Res., 10(1), 40-46. https://doi.org/10.1111/j.1708-8208.2007.00059.x.
  7. Bishop, N. W. and Sherratt, F. (2000), "Finite element based fatigue calculations", NAFEMS.
  8. Bulaqi, H.A., Mashhadi, M.M., Safari, H., Samandari, M.M. and Geramipanah, F. (2015), "Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: A finite element analysis", J. Prosthet. Dent., 113(6), 548-557. https://doi.org/10.1016/j.prosdent.2014.11.007.
  9. Cho, S. Y., Huh, Y. H., Park, C. J. and Cho, L. R. (2016), "Three-Dimensional Finite Element Analysis of the Stress Distribution at the Internal Implant-Abutment Connection", Int. J. Periodontics Restorative Dent., 36(3). http://doi.org/10.11607/prd.2351.
  10. Du, J., Lee, J.H., Jang, A.T., Gu, A., Hossaini-Zadeh, M., Prevost, R., Curtis, D.A. and Ho, S.P. (2015), "Biomechanics and strain mapping in bone as related to immediately-loaded dental implants", J. Biomech., 48(12), 3486-3494. https://doi.org/10.1016/j.jbiomech.2015.05.014.
  11. Djebbar, N., Serier, B. and Bouiadjra, B.B. (2015), "Finite element analysis in static and dynamic behaviors of dental prosthesis", Struct. Eng. Mech., 55(1), 65-78. http://dx.doi.org/10.12989/sem.2015.55.1.065.
  12. Draper, J. (1999). "Modern metal fatigue analysis". HKS. Inc. Pawtucket.
  13. El Sallah, Z.M., Smail, B., Abderahmane, S., Bouiadjra, B.B. and Boualem, S. (2016), "Numerical simulation of the femur fracture under static loading", Struct. Eng. Mech., 60(3), 405-412. http://dx.doi.org/10.12989/sem.2016.60.3.405.
  14. Farhan, A.M. (2017), "Effect of magnetic field on wave propagation in cylindrical poroelastic bone with cavity", Struct. Eng. Mech., 61(4), 539-549. http://dx.doi.org/10.12989/sem.2017.61.4.539.
  15. Guda, T., Ross, T.A., Lang, L.A. and Millwater, H.R. (2008), "Probabilistic analysis of preload in the abutment screw of a dental implant complex", J. Prosthet. Dent., 100(3), 183-193. https://doi.org/10.1016/S0022-3913(08)60177-8.
  16. Junior, J.F.S., Pellizzer, E.P., Verri, F.R. and de Carvalho, P. S. P. (2013), "Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study", Mater. Sci. Eng. C, 33(8), 4700-4714. https://doi.org/10.1016/j.msec.2013.07.027.
  17. Kim, Y.H. and Cho, H.W. (2016), "Comparison of marginal and internal fit of zirconia abutments with titanium abutments in internal hexagonal implants", J. Korean Acad. Prosthodont., 54(2), 93-102. http://doi.org/10.4047/jkap.2016.54.2.93.
  18. Koutouzis, T., Mesia, R., Calderon, N., Wong, F. and Wallet, S. (2014), "The effect of dynamic loading on bacterial colonization of the dental implant fixture-abutment interface: an in vitro study", J. Oral Implantol., 40(4), 432-437. https://doi.org/10.1563/AAID-JOI-D-11-00207.
  19. Lang, L.A., Kang, B., Wang, R.F. and Lang, B.R. (2003), "Finite element analysis to determine implant preload", J. Prosthet. Dent., 90(6), 539-546. https://doi.org/10.1016/j.prosdent.2003.09.012.
  20. Lee, H., Kwon, K.R., Paek, J., Pae, A. and Noh, K. (2017), "A Method for Minimizing Rotational Errors of Implant Prostheses", Int. J. Oral Maxillofac. Implants, 32(5). http://doi.org/10.11607/jomi.5324.
  21. Lee, H., Park, S. and Noh, G. (2019), "Biomechanical analysis of 4 types of short dental implant in a resorbed mandible", J. Prosthet. Dent., 121(4), 659-670. https://doi.org/10.1016/j.prosdent.2018.07.013.
  22. Lee, J.S., Choi, H.I., Lee, H., Ahn, S.J. and Noh, G. (2018), "Biomechanical effect of mandibular advancement device with different protrusion positions for treatment of obstructive sleep apnoea on tooth and facial bone: A finite element study", J. Oral. Rehabil., 45(12), 948-958. https://doi.org/10.1111/joor.12709.
  23. Lopez-Arancibia, A., Altuna-Zugasti, A. M., Aldasoro, H. A. and Pradera-Mallabiabarrena, A. (2015), "Bolted joints for single-layer structures: numerical analysis of the bending behavior", Struct. Eng. Mech., 56(3), 355-367. https://doi.org/10.12989/sem.2015.56.3.355.
  24. Mohamed, C., Smail, B., Bouiadjra, B. and Serier, B. (2016), "Numerical modeless of the damage, around inclusion in the orthopedic cement PMMA", Struct. Eng. Mech., 57(4), 717-731. https://doi.org/10.12989/sem.2016.57.4.717.
  25. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  26. Moraes, S.L.D.D., Verri, F.R., Junior, J.F.S., Almeida, D.A. D.F., Mello, C.C.D. and Pellizzer, E.P. (2013), "A 3-D finite element study of the influence of crown-implant ratio on stress distribution", Braz. Dent. J., 24(6), 635-641. http://dx.doi.org/10.1590/0103-6440201302287.
  27. Niinomi, M. (1998), "Mechanical properties of biomedical titanium alloys", Mater. Sci. Eng. A, 243(1-2), 231-236. https://doi.org/10.1016/S0921-5093(97)00806-X.
  28. Papakostas, G.I., McGrath, P., Stewart, J., Charles, D., Chen, Y., Mischoulon, D., Dording, C. and Fava, M. (2008), "Psychic and somatic anxiety symptoms as predictors of response to fluoxetine in major depressive disorder", Psychiatry Res., 161(1), 116-120. https://doi.org/10.1016/j.psychres.2008.02.011.
  29. Park, S.M., Lee, J.W. and Noh, G. (2018), "Which plate results in better stability after segmental mandibular resection and fibula free flap reconstruction? Biomechanical analysis", Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 126(5), 380-389. https://doi.org/10.1016/j.oooo.2018.05.048.
  30. Patterson, E.A. and Johns, R.B. (1992), "Theoretical analysis of the fatigue life of fixture screws in osseointegrated dental implants", Int. J. Oral. Maxillofac. Implants, 7(1), 26-33.
  31. Pisani, M.X., Presotto, A.G.C., Mesquita, M.F., Barao, V.A.R., Kemmoku, D.T. and Cury, A.A.D.B. (2018), "Biomechanical behavior of 2-implant-and single-implant-retained mandibular overdentures with conventional or mini implants", J. Prosthet. Dent., 120(3), 421-430. https://doi.org/10.1016/j.prosdent.2017.12.012.
  32. Radaelli, M.T.B., Idogava, H.T., Spazzin, A.O., Noritomi, P.Y. and Boscato, N. (2018), "Parafunctional loading and occlU.S.A.l device on stress distribution around implants: A 3D finite element analysis", J. Prosthet. Dent., 120(4), 565-572. https://doi.org/10.1016/j.prosdent.2017.12.023.
  33. Roberts, W.E., Huja, S. and Roberts, J.A. (2004), "Bone modeling: biomechanics, molecular mechanisms and clinical perspectives", Semin. Orthod., 10(2), 123-161. https://doi.org/10.1053/j.sodo.2004.01.003.
  34. Romanyk, D.L., Guan, R., Major, P.W. and Dennison, C.R. (2017), "Repeatability of strain magnitude and strain rate measurements in the periodontal ligament using fibre Bragg gratings: An ex vivo study in a swine model", J. biomech., 54, 117-122. https://doi.org/10.1016/j.jbiomech.2017.01.047.
  35. Rungsiyakull, C., Chen, J., Rungsiyakull, P., Li, W., Swain, M. and Li, Q. (2015), "Bone's responses to different designs of implant-supported fixed partial dentures", Biomech. Model. Mechanobiol., 14(2), 403-411. https://doi.org/10.1007/s1023.
  36. Steinebrunner, L., Wolfart, S., Ludwig, K. and Kern, M. (2008), "Implant-abutment interface design affects fatigue and fracture strength of implants", Clin. Oral Implants Res., 19(12), 1276-1284. https://doi.org/10.1111/j.1600-0501.2008.01581.x.
  37. Szwedowski, T.D., Fialkov, J. and Whyne, C.M. (2011), "Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton", Proc. Institution Mech. Engineers, Part H J. Eng. Medicine, 225(1), 58-67. https://doi.org/10.1243/09544119JEIM786.
  38. Tolidis, K., Papadogiannis, D., Papadogiannis, Y. and Gerasimou, P. (2012), "Dynamic and static mechanical analysis of resin luting cements", J. Mech. Behav. Biomed. Mater., 6, 1-8. https://doi.org/10.1016/j.jmbbm.2011.10.002.
  39. Toniollo, M.B., Macedo, A.P., Pupim, D., Zaparolli, D. and de Mattos, M.D.G.C. (2016), "Three-dimensional finite element analysis surface stress distribution on regular and short Morse taper implants generated by splinted and nonsplinted prostheses in the rehabilitation of various bony ridges", J. Craniofac. Surg., 27(3), e276-e280. http://doi.org/10.1097/SCS.0000000000002520.
  40. Toniollo, M.B., Macedo, A.P., Silveira Rodrigues, R.C., Ribeiro, R.F. and da Gloria Chiarello de Mattos, M. (2017), "A Three-Dimensional Finite Element Analysis of the Stress Distribution Generated by Splinted and Nonsplinted Prostheses in the Rehabilitation of Various Bony Ridges with Regular or Short Morse Taper Implants", Int. J. Oral Maxillofac. Implants, 32(2). http://doi.org/10.11607/jomi.4696.
  41. Topper, T., Wetzel, R. M. and Morrow, J. (1967), "Neuber's rule applied to fatigue of notched specimens", Illinois University at Urban Department of Theoretical and Applied Mechanics, https://apps.dtic.mil/dtic/tr/fulltext/u2/659550.pdf.
  42. Verri, F.R., de Souza Batista, V.E., Santiago Jr, J.F., de Faria Almeida, D.A. and Pellizzer, E.P. (2014), "Effect of crown-to-implant ratio on peri-implant stress: a finite element analysis", Mater. Sci. Eng. C, 45, 234-240. https://doi.org/10.1016/j.msec.2014.09.005.
  43. Wang, R.F., Kang, B., Lang, L.A. and Razzoog, M.E. (2009), "The dynamic natures of implant loading", J. Prosthet. Dent., 101(6), 359-371. https://doi.org/10.1016/S0022-3913(09)60079-2.
  44. Wang, L. and Su, R.K.L. (2018), "Strengthening of preloaded RC columns by post compressed plates - A review", Struct. Eng. Mech., 65, 477-490. http://doi.org/10.12989/sem.2018.65.4.477.
  45. Westover, L., Faulkner, G., Hodgetts, W. and Raboud, D. (2016), "Advanced system for implant stability testing (ASIST)", J. Biomech., 49(15), 3651-3659. https://doi.org/10.1016/j.jbiomech.2016.09.043.
  46. Wierszycki, M., Kakol, W. and Lodygowski, T. (2006), "The screw loosening and fatigue analyses of three dimensional dental implant model", In ABAQUS Users' Conference 2006, Boston, U.S.A., May.

Cited by

  1. Effect of Passive Support of the Spinal Muscles on the Biomechanics of a Lumbar Finite Element Model vol.10, pp.18, 2020, https://doi.org/10.3390/app10186278
  2. Design process of patient-specific osteosynthesis plates using topology optimization vol.8, pp.5, 2021, https://doi.org/10.1093/jcde/qwab047