DOI QR코드

DOI QR Code

Aerodynamic Effects of Gun Gas on the Aircraft's Armament System

항공기 무장시스템 Gun Gas 공력특성에 관한 연구

  • Received : 2020.01.15
  • Accepted : 2020.05.08
  • Published : 2020.05.31

Abstract

This study examined the airflow field around a gun port on the flight condition of gunfire to verify the aircraft performance and safety effects and gun gas rate, path according to the options of diverter configuration. The gun port diverter not only effectively lowered the heat generated by gunfire but also effectively discharged the gun gas upwards. The path of gun gas can be changed according to its configuration. According to the optional configuration of the rear-gun-port diverter, the flow rate, path, and pressure of the gun gas were analyzed during gunfire. An analysis of the internal velocity distribution and the temperature change of the gun port revealed a rapid decrease in flow rate through the rear diverter according to the option configuration. The forward flow rate showed a similar tendency with little change. This ensures that the gun gas generated during gunfire has a sufficient flow distance from the aircraft surface, regardless of the rear gun port diverter's optional configuration. The flow stagnation of gun gas according to the option configuration of diverter had a great influence on the internal temperature rise of a gun port.

본 연구는 항공기 기총발사 비행조건에서 Gun Port 주변 공기 유동장을 분석하여 디버터(Diverter) 옵션 형상에 따른 Gun Gas 유동량 및 경로를 확인하고 항공기 성능 및 안전성 영향을 확인하였다. Gun Port Diverter는 기총사격 시 발생하는 열을 효과적으로 낮춰주는 역할을 할 뿐아니라 Gun Gas를 상향방향으로 효율적으로 배출시키는 역할을 수행하며, 그 형상에 따라 Gun Gas 경로가 변경될 수 있다. 후방 Gun Port Diverter의 옵션 형상에 따라 기총 발사 시 Gun Gas의 유량, 경로, 압력을 분석하였다. Gun Port 내부 속도분포와 온도변화를 분석한 결과 후방 Diverter를 지나는 유량은 옵션 형상에 따라 급격이 감소하는 경향을 보이지만, 전방을 지나는 유량은 변화가 적은 비슷한 경향을 보임을 확인하였다. 따라서 기총발사 시 발생하는 Gun Gas는 후방 Gun Port Diverter 옵션 형상과 관계없이 항공기 표면에서 충분한 유동 거리가 확보되며, Diverter 옵션 형상에 따른 Gun Gas 유동의 정체는 Gun Port 내부 온도 상승에 큰 영향을 미침을 확인하였다.

Keywords

References

  1. Fansler, K. S, "Dependence of Free-Field Impulse on the Decay Time of Energy Efflux for a Jet Flow," The Shock and Vibration Bulletin, Bulletin 56, pp. 203-212, 1986.
  2. Heaps, C. W, Fansler, K. S, and Schmidt, E. M, "Computer Implementation of a Muzzle Blast Prediction Technique," The Shock and Vibration Bulletin, Bulletin 56, pp. 213-229, 1986.
  3. D.G. Kim, J.H. Han, J.H. Jang, "Analysis of Aircraft Vibration Caused by Gun Blast Wave," The Korean Society For Aeronautical And Space Sciences, pp. 413-416, 2005.
  4. Tae-Woo Kang, Myoung-Soo Kim, Young-Hak Kim, Seung-Han Kim, "Aerodynamic Effects of Gas-Air Mixture on the Aircraft's Armament System," The Korea Institute of Military Science and Technology, vol. 20, no.6, pp. 788-793, 2017. DOI: https://doi.org/10.9766/KIMST.2017.20.6.788
  5. "AIRCRAFT/STORES COMPATIBILITY SYSTEMS ENGINEERING DATA REQUIREMENTS AND TEST PROCEDURES," MIL-HDBK-1763, 1998.
  6. B.G. Kim, Y.H. Kim, "T-50 20mm Gun System Design," The Korean Society For Aeronautical And Space Sciences, pp. 754-757, 2004.
  7. ANSYS, ANSYS Fluent Theory Guide, Version 15.0.
  8. Roe, P. L, "Approximate Riemann Solvers, Parameter Vectors and Difference Schemes," Journal of Computational Physics, Vol. 43, No.2, pp. 357 -372, 1981. DOI: https://doi.org/10.1016/0021-9991(81)90128-5