DOI QR코드

DOI QR Code

양이온 개환중합에 의한 폴리알킬렌 옥사이드 코폴리올의 합성과 아지드화 코폴리올의 특성 연구

Synthesis of Characterization of Poly(alkylene oxide) Copolyols by Catioinc Ring Opening Polymerization and Their Azide Functionalized Copolyols

  • Lee, Jae-Myung (Department of Material & Chemical Engineering, Hanyang University) ;
  • Seol, Yang-Ho (Poongwon Chemical Co, Ltd, Polymer R&D Center) ;
  • Kwon, Jung-Ok (Poongwon Chemical Co, Ltd, Polymer R&D Center) ;
  • Jin, Yong-Hyun (J-Chem, Hanyang Business Incubator) ;
  • Noh, Si-Tae (Department of Material & Chemical Engineering, Hanyang University)
  • 투고 : 2020.02.07
  • 심사 : 2020.04.08
  • 발행 : 2020.06.10

초록

Oxirane계 단량체의 양이온 개환 공중합반응으로 합성되는 ECH (ephichorohydrin) 기반 copolyol (PECH copolyol)류의 특성에 대한 반응온도, 용매의 종류 및 개시제에 대한 영향을 연구하였다. 공단량체로는 butylene oxide와 hexylene oxide 두 종류의 알킬렌 옥사이드를 사용하였으며, 중합 조건은 methylene chloride (MC) 용매에서 개시제로 diethylene glycol (DEG)를 사용한 조건과 toluene을 용매에서 tripropylene glycol (TPG)를 개시제로 사용한 두 조건으로 진행하였다. 개환 공중합반응에서 active monomer (AM) mechanism 유도를 위해 단량체는 실린지 펌프를 사용해 IMA (increased monomer addition) 방법으로 주입하였고 중합온도는 -5 ℃에서 실행하였다. 합성된 ephichorohydrin (ECH) 기반 copolyol인 PECH copolyol은 치환반응으로 ECH unit를 아지드화하여 glycidyl azide계 에너지 함유 copolyol (GAP copolyol)로 전환하였다. 합성된 아지드화 코폴리올은 용매와 개시제의 변화에 대한 영향은 크지 않았으며, 분자량은 아지드화 반응 후 평균 500 증가함으로써 GAP 코폴리올이 설계한 대로 중합되었음을 확인하였다. DSC 분석으로 copolyol류의 조성비 변화에 따른 유리전이 온도(glass transition temperature, Tg)의 변화를 측정하였을 때, 공단량체의 함량이 증가할수록 알킬 사슬의 길이에 의한 영향으로 Tg와 점도가 모두 감소하는 경향을 보였다. 아지드화 반응과정에서 생성되는 CH3N3의 생성을 원천적으로 방지할 수 있으며, 대규모 공정이 가능할 것으로 기대된다.

Poly(epichlorohydrin) copolyol series (PECH copolyols) were synthesized via cationic ring-opening copolymerization (ROCP) of oxirane-based monomers and effects of reaction temperature, solvent type, and initiator were studied. As a comonomer, two types of alkylene oxides were used, and polymerization conditions were conducted both with diethylene glycol (DEG) as an initiator in methylene chloride (MC) solvent and tripropylene glycol (TPG) in toluene solvent. In order to induce the active monomer (AM) mechanism in the ring-opening copolymerization reaction, the monomer was injected by an incremental monomer addition (IMA) method using a syringe pump, and the polymerization was performed at -5 ℃. PECH copolyol, a synthesized ephichorohydrin (ECH)-based copolyol, was converted to glycidyl azide-based energy-containing copolyol (GAP copolyol) by azadizing the ECH unit through a substitution reaction. It was confirmed that the synthesized azide copolyol had little effects on changes of the solvent and the initiator. Also, the molecular weight increased 500 after the azide reaction, thereby the GAP copolyol was polymerized as designed. As the content of the comonomer increased, both the Tg and viscosity tended to decrease due to the influence of the alkyl chain length. It is possible to fundamentally prevent CH3N3 amount produced in the azide reaction process, and it is expected that a large-scale process could be achievable.

키워드

참고문헌

  1. B. Gaur, B. Lochab, V. Choudhary, and I. K. Varma, Azido polymers - energetic binders for solid rocket propellants, J. Macromol. Sci. Polymer Rev., 43(4), 505-545 (2003). https://doi.org/10.1081/MC-120025976
  2. B. S. Cho and S. T. Noh, Synthesis and thermal properties of ferrocene-modified poly(epichlorohydrin-co-2-(methoxymethyl)oxirane), Macromol. Res., 21(2), 221-227 (2013). https://doi.org/10.1007/s13233-013-1074-x
  3. A. M. Kawamoto, J. A. S. Holanda, U. Barbieri, G. Polacco, T. Keicher, H. Krause, and M. Kaiser, Synthesis and characterization of glycidyl azide-r-(3,3-bis(azidomethyl)oxetane) copolymers, Propell. Explos. Pyrot., 33(5), 365-372 (2008). https://doi.org/10.1002/prep.200700221
  4. E. Diaz, P. Brousseau, G. Ampleman, and R. E. Prud'homme, Heats of combustion and formation of new energetic thermoplastic elastomers based on GAP, PolyNIMMO and PolyGLYN, Propell. Explos. Pyrot., 28(3), 101-106 (2003). https://doi.org/10.1002/prep.200390015
  5. M. B. Frankel, L. R. Grant, and J. E. Flanagan, Historical development of glycidyl azide polymer, J. Propul. Power, 8(3), 560-563 (1992). https://doi.org/10.2514/3.23514
  6. E. J. Vandenberg, Polyethers containing azidomethyl side chains, US Patent, 3,645,917 (1972).
  7. S. P. Ribeiro, D. G. Santiago, and A. D. Vianna, Glycidyl azide polymer (GAP). I. syntheses and characterization, Polimeros, 22(5), 407-413 (2012). https://doi.org/10.1590/S0104-14282012005000045
  8. S. P. Ribeiro, D. G. Santiago, and A. D. Vianna, Glycidyl azide polymer (GAP). II. reaction mechanism, Polimeros, 22(5), 414-421 (2012). https://doi.org/10.1590/S0104-14282012005000043
  9. M. B. Frankel, L. R. Grant, and J. E. Flanagan, Historical development of glycidyl azide polymer, J. Propul. Power, 8(3), 560-563 (1992). https://doi.org/10.2514/3.23514
  10. A. M. Kawamoto, J. I. S. Oliveria, L. C. Rezenda, T. Keicher, and H. Krause, Synthesis and charterization of energetic thermoplastic elastomers for propellants formulations, J. Aerosp. Technol. Manag., 1(1), 35-42 (2009) https://doi.org/10.5028/jatm.2009.01013542
  11. B. Barbieri, G. Polaco, and R. Massini, Synthesis of energetic polyethers from halogenated pecurosrs, Macromol. Symp., 234, 51-58 (2006). https://doi.org/10.1002/masy.200650208
  12. J. S. Kim, D. K. Kim, J. O. Kweon, J. M. Lee, S. T. Noh, and S. Y. Kim, Effects of annealing temperature on thermal properties of glycidyl azide polyol-based energetic thermoplastic polyurethane, Appl. Chem. Eng., 24(3), 305-313 (2013).
  13. H. S. Kim, J.-S. You, J. O. Kweon, J. S. Kim, T. S. Lee, S. T. Noh, Y. W. Jang, D. K. Kim, and S. K. Kweon, Phase behaviors of the GAP/PTMG polyurethanes chain extended with 3-azidopropane- 1,2-diol, Appl. Chem. Eng., 21(4), 377-384 (2010).
  14. M. J. Bohnlein and H. Krober, Technology of foamed propellants, Propell. Explos. Pyrot., 34(3), 239-244 (2009) https://doi.org/10.1002/prep.200800113
  15. X. G. Han, R. A. Shanks, and D. Pavel, The synthesis and thermal properties of polyepichlorohydrin side-chain liquid crystal polymers, Eur. Polym. J., 41(5), 984-991 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.038
  16. M. S. Eroglu, B. Hazer, O. Guven, and B. M. Baysal, Preparation and thermal characterization of block copolymers by macroazonitriles having glycidyl azide and epichlorohydrin moieties, J. Appl. Polym. Sci., 60(12), 2141-2147 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2141::AID-APP11>3.0.CO;2-A
  17. T. S. Reddy, J. K. Nair, R. S. Satpute, G. M. Gore, and A. K. Sikder, Reological studies on energetic thermoplastic elastomers (ETPEs), J. Appl. Polym. Sci., 118, 2365-2368 (2010). https://doi.org/10.1002/app.32182
  18. S. Penczek, M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski, Living ring-opening polymerizations of heterocyclic monomers, Prog. Polym. Sci., 32(2), 247-282 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.002
  19. K. Al-Kaabi and A. J. Van Reenen, Synthesis of poly(methyl methacrylate-g-glycidyl azide) graft copolymers using N, N-dithiocarbamate- mediated iniferters, J. Appl. Polym. Sci., 114(1), 398-403 (2009). https://doi.org/10.1002/app.30522
  20. S. Carlotti, A. Labbe, V. Rejsek, S. Doutaz, M. Gervais, and A. Deffieux, Living/controlled anionic polymerization and copolymerization of epichlorohydrin with tetraoctylammonium bromide-Triisobutylaluminum initiating systems, Macromolecules, 41(19), 7058-7062 (2008). https://doi.org/10.1021/ma801422c
  21. S. Penczek, P. Kubisa, and R. Szymanski, Activated monomer propagation in cationic polymerizations, Makromol. Chem., Macromol. Symp., 3, 203-220 (1986). https://doi.org/10.1002/masy.19860030116
  22. R. E. Parker and N. S. Isaacs, Mechanisms of epoxide reactions, Chem. Rev., 59(4), 737-799 (1959). https://doi.org/10.1021/cr50028a006
  23. D. Guanaes, E. Bittencourt, M. N. Eberlin, and A. A. Sabino, Influence of polymerization conditions on the molecular weight and polydispersity of polyepichlorohydrin, Eur. Polym. J., 43(5), 2141-2148 (2007). https://doi.org/10.1016/j.eurpolymj.2007.02.016
  24. B. Antelmann, M. H. Chisholm, S. S. Iyer, J. C. Huffman, D. Navarro-Llobet, M. Pagel, S. J. Simonsick, and W. Q. Zhong, Molecular design of single site catalyst precursors for the ring-opening polymerization of cyclic ethers and esters, Macromolecules, 34(10), 3159-3175 (2001). https://doi.org/10.1021/ma0102316
  25. R. Tokar, P. Kubisa, S. Penczek, and A. Dworak, Cationic polymerization of glycidol - coexistence of the activated monomer and active chain-end mechanism, Macromolecules, 27(2), 320-322 (1994). https://doi.org/10.1021/ma00080a002
  26. M. Bednarek, P. Kubisa, and S. Penczek, Coexistence of activated monomer and active chain end mechanisms in cationic copoly merization of tetrahydrofuran with ethylene oxide, Macromolecules, 32(16), 5257-5263 (1999). https://doi.org/10.1021/ma9900939
  27. M. S. Eroglu and O. Guven, Spectroscopic and thermal characterization of poly(glycidyl azide) converted from polyepichlorohydrin, J. Appl. Polym. Sci., 60(9), 1361-1367 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1361::AID-APP11>3.0.CO;2-5
  28. M. Bednarek, T. Biedron, K. Kaluzynski, P. Kubisa, J. Pretula, and S. Penczek, Ring-opening polymerization processes involving activated monomer mechanism. cationic polymerization of cyclic ethers containing hydroxyl groups, Macromol. Symp., 157, 1-11 (2000). https://doi.org/10.1002/1521-3900(200007)157:1<1::AID-MASY1>3.0.CO;2-X