DOI QR코드

DOI QR Code

Change of Physical Property of Rubber Compound by Terpene Modified Phenolic Resin Structure

테르펜 개질 페놀 수지 구조에 따른 배합고무 물성 변화

  • Kim, Kun Ok (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Kim, Do-Heyoung (Department of Advanced Chemicals & Engineering, Chonnam National University) ;
  • Song, Yo Soon (Department of Advanced Chemicals & Engineering, Chonnam National University)
  • 김건옥 (전남대학교 신화학소재공학과) ;
  • 김도형 (전남대학교 신화학소재공학과) ;
  • 송요순 (전남대학교 신화학소재공학과)
  • Received : 2020.03.23
  • Accepted : 2020.05.17
  • Published : 2020.06.10

Abstract

Terpene-modified phenolic resins were used to improve the tires wet traction related to the driving safety and also rolling resistance related to fuel efficiency. In this work, alpha-pinene, beta pinene, and delta limonene resins, which constitute different basic structures of terpene-modified phenolic resins, were individually added to the tread compounds of tires and their physical properties were compared with those of the alkyl phenol resin compounds. Alkyl phenolic resins showed no significant difference in tangent delta from terpene-modified phenolic resins at 0 ℃, which is related to wet traction, but showed higher tangent delta at 80 ℃, which is related to rolling resistance, indicating smaller fuel efficiency improvement effects. Among the terpene-modified phenolic resins, beta pinene one showed improved wet traction and fuel efficiency compared to those of other resins. Delta limonene resin showed the best wet traction improvement effect, and alkyl phenolic resins showed relatively high tensile strength and abrasion property. All terpene-modified resins exhibited better rolling resistance than those of alkyl phenolic ones so that they can be said to have better fuel efficiency improvement effects and also to improve other properties compared to those of blanks. Terpene-modified phenolic resins could be used when mixing tire compounds referring to the properties of the phenolic resins revealed in this work, which could result in preparing compounds with improved wet traction and rolling resistance.

테르펜 개질 페놀 수지는 타이어의 주행 안전성과 관련 있는 웨트 트랙션과 연비와 관련된 구름저항을 개선하기 위해 사용한다. 이 시험은 테르펜 개질 페놀 수지의 기본 구조가 각각 알파 피넨, 베타 피넨, 델타 리모넨으로 달리한 수지를 타이어 트레드 배합물에 첨가하여 알킬 페놀 수지의 배합물과 물성 차이를 비교하였다. 알킬 페놀 수지는 웨트 트랙션과 관련 있는 0 ℃에서 탄젠트 델타가 테르펜 개질 페놀 수지와 큰 차이가 없지만 구름저항과 관련 있는 80℃에서 탄젠트 델타가 높게 나타나 연비 개선 효과가 적었다. 테르펜 개질 페놀 수지 중 베타 피넨은 웨트 트랙션과 연비 개선 효과가 다른 수지에 비해 고르게 나타났으며, 델타 리모넨 수지는 웨트 트랙션 개선효과가 가장 좋았고, 인장강도 및 마모 성능은 알킬 페놀 수지가 비교적 높게 나왔다. 모든 테르펜 개질 수지는 구름저항에서 알킬 페놀수지보다 우수하여 연비 개선효과 좋다고 할 수 있으며, 블랭크에 비해 다른 특성도 나아지는 효과를 보였다. 이 시험에서 사용된 페놀 수지의 특성을 참고하여 타이어 컴파운드를 배합할 때 개질된 테르펜 페놀 수지를 선택하면 웨트 트랙션, 구름저항 등의 특성을 효과적으로 개선한 컴파운드를 만들 수 있다.

Keywords

References

  1. J. S. Dick, Rubber Technology Compounding and Testing for Performance, 2nd ed., 311-312, Hanser Gardner Publication, Inc, Cincinnati, USA (2009).
  2. V. Deniz, Substitution of aromatic processing oils in rubber compounds, KGK Rubber Point, 64, 48-51 (2011).
  3. International Agency for Research on Cancer Monographs Evaluation of Carcinogenic Risk, Lyon, France, 32 (1983).
  4. International Agency for Research on Cancer: Mineral oils. In: IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, 33 (1984).
  5. S. M. A. Doak, V. K. H. Brown, P. F. Hunt, J. D. Smitht, and F. J. C. Roe, The carcinogenic potential of twelve refined mineral oils following long-term topical application, Br. J. Cancer, 48, 429-436 (1983). https://doi.org/10.1038/bjc.1983.209
  6. S. Bonnie and Ed Terrill, Sustainable Processing oils in Low RR Tread Compounds, Ackron Rubber Development Laboratoru, INC., Ohio, USA. (2011).
  7. W. P. Wolf, Rubber composition containing improved tackifiers, US Patent, 20070037908A1 (2007).
  8. W. P. Wolf and A. Deshpande, Tires and tread formed from phenol-aromatic-terpene resin, US Patent, 8637606B2 (2014).
  9. H. Otuskuki, Pneumatic tire, US Patent, 2017/0158844A1 (2017).
  10. A. Ayuta, Phenolic resin for reinforcing rubber, Network Polymer, 33, 281-288 (2012).
  11. R. Mildenberg, M. Zander, and G. Collin, Hydrocarbon Resin, 32, VCH Publishers, Inc., New York, USA (2008).
  12. Y. S. Song and K. O. Kim, Interfacial tacky and adhesive characteristics between tire tread compounds and rubber cement, Appl. Chem. Eng., 29, 399-404 (2018). https://doi.org/10.14478/ACE.2018.1012
  13. G. Seo, D. l. Kim, S. J. Kim, C. S. Ryu, J. K. Yang, and Y. G. Kang, Reinforcement of rubber properties by carbon black and silica fillers: A review, Elastomers Compos., 52, 114-130 (2017). https://doi.org/10.7473/EC.2017.52.2.114
  14. B. H. Park and J. H. Go, Study of physical properties and tire performance by using payne effect of tread, J. Adv. Eng. and Tech., 6, 175-179 (2013).
  15. D. W. Kim, B. H. Seo, H. J. Kim, H. J. Paik, J. W. Kang, and W. H. Kim, Mechanical properties of acrylonitrile functionalized emulsion SBR/silica compounds, Elastomer Compos., 47, 54-64 (2012). https://doi.org/10.7473/EC.2012.47.1.054
  16. D. H. Chang, Vulcanization and Physical Properties of Rubber Compound, Ph.D Dissertations, Geonnam University (1996).
  17. N. Vleugels, W. P. Wolf, W. K. Dierkesa, and J. W. M. Noordermeer, Influence of oligomeric resins on traction and rolling resistance of silica tire treads, Proceedings of Technical Meeting of Rubber Division, ACS, Oct. 8 (2013).
  18. S. H. Jang, X. X. Li, Q. Li, D. H. Lee, and U. R. Cho, Study on properties for SSBR/ENR blend filled with silica, Polymer (KOREA), 42, 106-111 (2018). https://doi.org/10.7317/pk.2018.42.1.106