DOI QR코드

DOI QR Code

Changes of Adsorption Capacity and Structural Properties during in situ Regeneration of Activated Carbon Bed Using Ozonated Water

오존수 산화를 이용한 활성탄 흡착탑의 현장 재생 시 흡착용량 및 구조특성의 변화

  • Lee, Jinjoo (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • 이진주 (명지대학교 환경에너지공학과) ;
  • 이기세 (명지대학교 환경에너지공학과)
  • Received : 2020.05.19
  • Accepted : 2020.05.25
  • Published : 2020.06.10

Abstract

An in situ regeneration of activated carbon bed using an ozonated water was studied in order for avoiding the carbon loss, contaminant emission and time consuming for discharge-regeneration-repacking in a conventional thermal regeneration process. Using phenol and polyethylene glycol (PEG) as adsorbates, the adsorption breakthrough and in situ regeneration with the ozonated water were repeated. These organics were supposed to degrade by the oxidation reaction of ozone, regenerating the bed for reuse. As the number of regeneration increased, the adsorption capacity for phenol was reduced, but the change was stabilized showing no further reduction after reaching a certain degree of decrement. The reduction of adsorption capacity was due to the increase of pore size resulting in the decrease of specific surface area during ozonation. The adsorption capacity of phenol decreased after the ozonated regeneration because the in-pore adsorption was prevalent for small molecules like phenol. However, PEG did not show such decrease and the adsorption capacity was constantly maintained after several cycles of the ozonated regeneration probably because the external surface adsorption was the major mechanism for large molecules like PEG. Since the reduction in the pore size and specific surface area for small molecules were proportional to the duration of contact time with the ozonated water, careful considerations of the solute size to be removed and controlling the contact time were necessary to enhance the performance of the ozonated in situ regeneration of activated carbon bed.

하폐수처리 및 정수처리에 사용되는 활성탄 흡착 공정에서 기존의 활성탄 열재생법 비해 활성탄 손실과 불완전 연소로 인한 오염물질 발생도 적으며, 사용 활성탄의 인발-재생-재충진에 소요되는 시간의 절약이 가능한 재생 방법으로 오존수를 이용한 in situ regeneration에 대한 기초연구를 수행하였다. 활성탄 흡착 컬럼 상에서 페놀(phenol) 및 PEG를 흡착 파과 시킨 후 오존수 접촉으로 흡착물질을 분해 제거하는 흡착-재생 싸이클을 반복하였다. 오존수 접촉에 의한 재생 횟수가 증가할수록 페놀 흡착용량은 어느 정도 감소하지만, 일정 수준으로의 감소 후에는 구조 변화가 안정화되어 추가적인 감소가 일어나지 않았다. 흡착 용량이 감소하는 이유는 오존과의 반응에 의해 활성탄의 미세공 크기가 증가하면서 비표면적이 감소하기 때문으로 나타났다. 이러한 세공 크기의 변화와 비표면적의 변화로 인하여 재생 후 in-pore adsorption이 우세한 페놀과 같은 저분자량 물질의 흡착효율은 감소하게 되나 external adsorption 비율이 큰 PEG와 같은 고분자량 물질의 흡착효율은 크게 영향을 받지 않았다. 세공 크기 및 비표면적의 변화는 오존수와의 접촉시간이 길어질수록 심화되므로 제거하려는 물질의 크기를 고려하고 접촉시간을 조절함으로써 흡착 효율의 유지를 제어하는 것이 필요하다.

Keywords

References

  1. T. D. Reynolds and P. A. Richards, Unit Operations and Process in Environmental Engineering, 2nd Ed., PWS, MA, USA (1996).
  2. J. W. Park, H.-C. Kim, A. S. Meyer, S. Kim, and S. K. Maeng, Influences of NOM composition and bacteriological characteristics on biological stability in a full-scale drinking water treatment plant, Chemosphere, 160, 189-198 (2016). https://doi.org/10.1016/j.chemosphere.2016.06.079
  3. B. W. Lykins Jr., R. M. Clark, and J. Q. Adams, Granular activated carbon for controlling THMs, J. Am. Water Works Assoc., 80(5), 85-92 (1988). https://doi.org/10.1002/j.1551-8833.1988.tb03041.x
  4. R. J. Martin and W. J. Ng, The thermal regeneration of exhausted activated carbon: The balance between weight loss and regeneration efficiency. In: L. Pawlowski, W. J. Lacy, and J. J. Dlugosz (eds), Chemistry for the Protection of the Environment, pp. 427-438, Environmental Science Research, vol 42. Springer, MA, USA (1991)
  5. X. He, M. Elkouz, M. Inyang, E. Dickenson, and E. C. Wert, Ozone regeneration of granular activated carbon for trihalomethane control, J. Hazard. Mater., 326, 101-109 (2017). https://doi.org/10.1016/j.jhazmat.2016.12.016
  6. A. Bachar, B. Gurzeda, J. Zembrzuska, M. Nocun, and P. Krawczyk, Regeneration of expanded graphite electrodes by joined electrochemical and ozone treatment in liquid phase, J. Solid State Electrochem., 22, 3965-3975 (2018). https://doi.org/10.1007/s10008-018-4098-5
  7. I. Lee, E. Lee, H. Lee, and K. Lee, Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone, Appl. Chem. Eng., 22(6), 617-622 (2011).
  8. H. Lee, E. Lee, C.H. Lee, and K. Lee, Degradation of chlorotetracycline and bacterial disinfection in livestock wastewater by ozone-based advanced oxidation, J. Ind. Eng. Chem., 17(3), 468-473 (2011). https://doi.org/10.1016/j.jiec.2011.05.006
  9. H. T. Luu, D. N. Minh, and K. Lee, Effects of advanced oxidation of penicillin on biotoxicity, biodegradability and subsequent biological treatment, Appl. Chem. Eng., 29(6), 690-695 (2018). https://doi.org/10.14478/ace.2018.1079
  10. APHA-AWWA-WEF, Standard Methods for the Examination of Water and Wastewater, 21st ed., American Public Health Association, Washington DC, USA (2005).
  11. P. M. Alvarez, F. J. Beltran, V. Gomez-Serrano, J. Jaramillo, and E. M. Rodriguez, A comparison between catalytic ozonation and activated carbon adsorption/ozone-regeneration processes for wastewater treatment, Appl. Catal. B: Environ., 92, 393-400 (2009). https://doi.org/10.1016/j.apcatb.2009.08.019
  12. F. S. Cannon, V. L. Snoryink, R. G. Lee, G. Dagois, and J. R. Dewolfe. Effect of calcium in field-spent GACs on pore development during regeneration, J. Am. Water Works Assoc., 85(3), 76-89 (1993). https://doi.org/10.1002/j.1551-8833.1993.tb05959.x
  13. Y. Guo and E. Du, The effects of thermal regeneration conditions and inorganic compounds on the characteristics of activated carbon used in power plant, Energy Procedia, 17, 444-449 (2012). https://doi.org/10.1016/j.egypro.2012.02.118
  14. H. Valdes, M. Sanchez-Polo, J. Rivera-Utrilla, and C. A. Zaror, Effect of ozone treatment on surface properties of activated carbon, Langmuir, 18, 2111-2116 (2002). https://doi.org/10.1021/la010920a
  15. J. Chaichanawong, T. Yamanoto, and T. Ohmori. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol, J. Hazard. Mater., 175, 673-679 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.062
  16. K. Yaghmaeian, G. Moussavi, and A. Alahabadi, Removal of amoxicillin from contaminated water using $NH_4Cl$-activated carbon: Continuous flow fixed-bed adsorption and catalytic ozonation regeneration, Chem. Eng. J., 236, 538-544 (2014). https://doi.org/10.1016/j.cej.2013.08.118
  17. J. Rivera-Utrilla and M. Sanchez-Polo. Adsorbent-adsorbate interactions in the adsorption of organic and inorganic species on ozonized activated carbons: A short review, Adsorption, 17, 611-620 (2011). https://doi.org/10.1007/s10450-011-9345-3