DOI QR코드

DOI QR Code

Combination therapy with cilostazol, aripiprazole, and donepezil protects neuronal cells from β-amyloid neurotoxicity through synergistically enhanced SIRT1 expression

  • Heo, Hye Jin (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Park, So Youn (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Lee, Yi Sle (Department of Pharmacology, Pusan National University School of Medicine) ;
  • Shin, Hwa Kyoung (Department of Korean Medical Science, Pusan National University School of Korean Medicine) ;
  • Hong, Ki Whan (Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University) ;
  • Kim, Chi Dae (Department of Pharmacology, Pusan National University School of Medicine)
  • Received : 2019.12.20
  • Accepted : 2020.03.23
  • Published : 2020.07.01

Abstract

Alzheimer's disease (AD) is a multi-faceted neurodegenerative disease. Thus, current therapeutic strategies require multitarget-drug combinations to treat or prevent the disease. At the present time, single drugs have proven to be inadequate in terms of addressing the multifactorial pathology of AD, and multitarget-directed drug design has not been successful. Based on these points of views, it is judged that combinatorial drug therapies that target several pathogenic factors may offer more attractive therapeutic options. Thus, we explored that the combination therapy with lower doses of cilostazol and aripiprazole with add-on donepezil (CAD) might have potential in the pathogenesis of AD. In the present study, we found the superior efficacies of donepezil add-on with combinatorial mixture of cilostazol plus aripiprazole in modulation of expression of AD-relevant genes: Aβ accumulation, GSK-3β, P300, acetylated tau, phosphorylated-tau levels, and activation of α-secretase/ADAM 10 through SIRT1 activation in the N2a Swe cells expressing human APP Swedish mutation (N2a Swe cells). We also assessed that CAD synergistically raised acetylcholine release and choline acetyltransferase (CHAT) expression that were declined by increased β-amyloid level in the activated N2a Swe cells. Consequently, CAD treatment synergistically increased neurite elongation and improved cell viability through activations of PI3K, BDNF, β-catenin and α7-nicotinic cholinergic receptors in neuronal cells in the presence of Aβ1-42. This work endorses the possibility for efficient treatment of AD by supporting the synergistic therapeutic potential of donepezil add-on therapy in combination with lower doses of cilostazol and aripiprazole.

Keywords

Acknowledgement

This study was supported by a 2-Year Research Grant of Pusan National University, Republic of Korea.

References

  1. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am J Pathol. 1999;155:853-862. https://doi.org/10.1016/S0002-9440(10)65184-X
  2. Nunan J, Small DH. Regulation of APP cleavage by alpha-, beta- and gamma-secretases. FEBS Lett. 2000;483:6-10. https://doi.org/10.1016/S0014-5793(00)02076-7
  3. Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, Fahrenholz F. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J Clin Invest. 2004;113:1456-1464. https://doi.org/10.1172/JCI20864
  4. Kojro E, Fahrenholz F. The non-amyloidogenic pathway: structure and function of alpha-secretases. Subcell Biochem. 2005;38:105-127. https://doi.org/10.1007/0-387-23226-5_5
  5. Rojo AI, Sagarra MR, Cuadrado A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem. 2008;105:192-202. https://doi.org/10.1111/j.1471-4159.2007.05124.x
  6. Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nat Rev Neurosci. 2007;8:663-672. https://doi.org/10.1038/nrn2194
  7. Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer's disease. J Neurochem. 2008;104:1433-1439. https://doi.org/10.1111/j.1471-4159.2007.05194.x
  8. Jamsa A, Hasslund K, Cowburn RF, Backstrom A, Vasange M. The retinoic acid and brain-derived neurotrophic factor differentiated SH-SY5Y cell line as a model for Alzheimer's disease-like tau phosphorylation. Biochem Biophys Res Commun. 2004;319:993-1000. https://doi.org/10.1016/j.bbrc.2004.05.075
  9. Lee HR, Park SY, Kim HY, Shin HK, Lee WS, Rhim BY, Hong KW, Kim CD. Protection by cilostazol against amyloid-${\beta}1$-40-induced suppression of viability and neurite elongation through activation of $CK2{\alpha}$ in HT22 mouse hippocampal cells. J Neurosci Res. 2012;90:1566-1576. https://doi.org/10.1002/jnr.23037
  10. Counts SE, Mufson EJ. The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J Neuropathol Exp Neurol. 2005;64:263-272. https://doi.org/10.1093/jnen/64.4.263
  11. Niewiadomska G, Baksalerska-Pazera M, Riedel G. The septohippocampal system, learning and recovery of function. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:791-805. https://doi.org/10.1016/j.pnpbp.2009.03.039
  12. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry. 1999;66:137-147. https://doi.org/10.1136/jnnp.66.2.137
  13. Sanabria-Castro A, Alvarado-Echeverria I, Monge-Bonilla C. Molecular pathogenesis of Alzheimer's disease: an update. Ann Neurosci. 2017;24:46-54. https://doi.org/10.1159/000464422
  14. Anekonda TS, Reddy PH. Neuronal protection by sirtuins in Alzheimer's disease. J Neurochem. 2006;96:305-313. https://doi.org/10.1111/j.1471-4159.2005.03492.x
  15. Qin W, Yang T, Ho L, Zhao Z, Wang J, Chen L, Zhao W, Thiyagarajan M, MacGrogan D, Rodgers JT, Puigserver P, Sadoshima J, Deng H, Pedrini S, Gandy S, Sauve AA, Pasinetti GM. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006;281:21745-21754. https://doi.org/10.1074/jbc.M602909200
  16. Michan S, Li Y, Chou MM, Parrella E, Ge H, Long JM, Allard JS, Lewis K, Miller M, Xu W, Mervis RF, Chen J, Guerin KI, Smith LE, McBurney MW, Sinclair DA, Baudry M, de Cabo R, Longo VD. SIRT1 is essential for normal cognitive function and synaptic plasticity. J Neurosci. 2010;30:9695-9707. https://doi.org/10.1523/JNEUROSCI.0027-10.2010
  17. Julien C, Tremblay C, Emond V, Lebbadi M, Salem N Jr, Bennett DA, Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol. 2009;68:48-58. https://doi.org/10.1097/NEN.0b013e3181922348
  18. Tippmann F, Hundt J, Schneider A, Endres K, Fahrenholz F. Upregulation of the alpha-secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J. 2009;23:1643-1654. https://doi.org/10.1096/fj.08-121392
  19. Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, Hong KW, Kim CD. Cilostazol suppresses $\beta$-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1- coupled retinoic acid receptor-$\beta$. J Neurosci Res. 2014;92:1581-1590. https://doi.org/10.1002/jnr.23421
  20. Lee JH, Kim KY, Lee YK, Park SY, Kim CD, Lee WS, Rhim BY, Hong KW. Cilostazol prevents focal cerebral ischemic injury by enhancing casein kinase 2 phosphorylation and suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation in rats. J Pharmacol Exp Ther. 2004;308:896-903. https://doi.org/10.1124/jpet.103.061853
  21. Hong KW, Lee JH, Kima KY, Park SY, Lee WS. Cilostazol: therapeutic potential against focal cerebral ischemic damage. Curr Pharm Des. 2006;12:565-573. https://doi.org/10.2174/138161206775474323
  22. Park SH, Kim JH, Bae SS, Hong KW, Lee DS, Leem JY, Choi BT, Shin HK. Protective effect of the phosphodiesterase III inhibitor cilostazol on amyloid $\beta$-induced cognitive deficits associated with decreased amyloid $\beta$ accumulation. Biochem Biophys Res Commun. 2011;408:602-608. https://doi.org/10.1016/j.bbrc.2011.04.068
  23. Burris KD, Molski TF, Xu C, Ryan E, Tottori K, Kikuchi T, Yocca FD, Molinoff PB. Aripiprazole, a novel antipsychotic, is a highaffinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002;302:381-389. https://doi.org/10.1124/jpet.102.033175
  24. Croxtall JD. Aripiprazole: a review of its use in the management of schizophrenia in adults. CNS Drugs. 2012;26:155-183. https://doi.org/10.2165/11208400-000000000-00000
  25. Pae CU, Forbes A, Patkar AA. Aripiprazole as adjunctive therapy for patients with major depressive disorder: overview and implications of clinical trial data. CNS Drugs. 2011;25:109-127. https://doi.org/10.2165/11538980-000000000-00000
  26. Paulsen JS, Salmon DP, Thal LJ, Romero R, Weisstein-Jenkins C, Galasko D, Hofstetter CR, Thomas R, Grant I, Jeste DV. Incidence of and risk factors for hallucinations and delusions in patients with probable AD. Neurology. 2000;54:1965-1971. https://doi.org/10.1212/WNL.54.10.1965
  27. Eustace A, Coen R, Walsh C, Cunningham CJ, Walsh JB, Coakley D, Lawlor BA. A longitudinal evaluation of behavioural and psychological symptoms of probable Alzheimer's disease. Int J Geriatr Psychiatry. 2002;17:968-973. https://doi.org/10.1002/gps.736
  28. De Deyn P, Jeste DV, Swanink R, Kostic D, Breder C, Carson WH, Iwamoto T. Aripiprazole for the treatment of psychosis in patients with Alzheimer's disease: a randomized, placebo-controlled study. J Clin Psychopharmacol. 2005;25:463-467. https://doi.org/10.1097/01.jcp.0000178415.22309.8f
  29. Park SY, Shin HK, Lee WS, Bae SS, Kim K, Hong KW, Kim CD. Neuroprotection by aripiprazole against $\beta$-amyloid-induced toxicity by P-$CK2{\alpha}$ activation via inhibition of GSK-$3{\beta}$. Oncotarget. 2017;8:110380-110391. https://doi.org/10.18632/oncotarget.22777
  30. Guzior N, Wieckowska A, Panek D, Malawska B. Recent development of multifunctional agents as potential drug candidates for the treatment of Alzheimer's disease. Curr Med Chem. 2015;22:373-404. https://doi.org/10.2174/0929867321666141106122628
  31. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215:1237-1239. https://doi.org/10.1126/science.7058341
  32. Takada-Takatori Y, Kume T, Izumi Y, Ohgi Y, Niidome T, Fujii T, Sugimoto H, Akaike A. Roles of nicotinic receptors in acetylcholinesterase inhibitor-induced neuroprotection and nicotinic receptor up-regulation. Biol Pharm Bull. 2009;32:318-324. https://doi.org/10.1248/bpb.32.318
  33. Sugimoto H, Yamanishi Y, Iimura Y, Kawakami Y. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors. Curr Med Chem. 2000;7:303-339. https://doi.org/10.2174/0929867003375191
  34. Giacobini E. Cholinesterase inhibitors stabilize Alzheimer's disease. Ann N Y Acad Sci. 2000;920:321-327. https://doi.org/10.1111/j.1749-6632.2000.tb06942.x
  35. Lee HR, Shin HK, Park SY, Kim HY, Lee WS, Rhim BY, Hong KW, Kim CD. Attenuation of $\beta$-amyloid-induced tauopathy via activation of $CK2{\alpha}$/SIRT1: targeting for cilostazol. J Neurosci Res. 2014;92:206-217. https://doi.org/10.1002/jnr.23310
  36. Leroy K, Yilmaz Z, Brion JP. Increased level of active GSK-3beta in Alzheimer's disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration. Neuropathol Appl Neurobiol. 2007;33:43-55. https://doi.org/10.1111/j.1365-2990.2006.00795.x
  37. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K. Spherical aggregates of beta-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3beta. Proc Natl Acad Sci U S A. 2003;100:6370-6375. https://doi.org/10.1073/pnas.1237107100
  38. Bannister AJ, Kouzarides T. The CBP co-activator is a histone acetyltransferase. Nature. 1996;384:641-643. https://doi.org/10.1038/384641a0
  39. Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010;67:953-966. https://doi.org/10.1016/j.neuron.2010.08.044
  40. Amour A, Knight CG, Webster A, Slocombe PM, Stephens PE, Knauper V, Docherty AJ, Murphy G. The in vitro activity of ADAM-10 is inhibited by TIMP-1 and TIMP-3. FEBS Lett. 2000;473:275-279. https://doi.org/10.1016/S0014-5793(00)01528-3
  41. Araki T, Sasaki Y, Milbrandt J. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science. 2004;305:1010-1013. https://doi.org/10.1126/science.1098014
  42. Fusco S, Ripoli C, Podda MV, Ranieri SC, Leone L, Toietta G, Mc-Burney MW, Schutz G, Riccio A, Grassi C, Galeotti T, Pani G. A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction. Proc Natl Acad Sci U S A. 2012;109:621-626. https://doi.org/10.1073/pnas.1109237109
  43. Auld DS, Kar S, Quirion R. Beta-amyloid peptides as direct cholinergic neuromodulators: a missing link? Trends Neurosci. 1998; 21:43-49. https://doi.org/10.1016/S0166-2236(97)01144-2
  44. Potter PE, Rauschkolb PK, Pandya Y, Sue LI, Sabbagh MN, Walker DG, Beach TG. Pre- and post-synaptic cortical cholinergic deficits are proportional to amyloid plaque presence and density at preclinical stages of Alzheimer's disease. Acta Neuropathol. 2011;122:49-60. https://doi.org/10.1007/s00401-011-0831-1
  45. Takada-Takatori Y, Kume T, Ohgi Y, Fujii T, Niidome T, Sugimoto H, Akaike A. Mechanisms of alpha7-nicotinic receptor up-regulation and sensitization to donepezil induced by chronic donepezil treatment. Eur J Pharmacol. 2008;590:150-156. https://doi.org/10.1016/j.ejphar.2008.06.027
  46. Votin V, Nelson WJ, Barth AI. Neurite outgrowth involves adenomatous polyposis coli protein and beta-catenin. J Cell Sci. 2005; 118(Pt 24):5699-5708. https://doi.org/10.1242/jcs.02679
  47. Rossler OG, Giehl KM, Thiel G. Neuroprotection of immortalized hippocampal neurones by brain-derived neurotrophic factor and Raf-1 protein kinase: role of extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase. J Neurochem. 2004;88:1240-1252. https://doi.org/10.1046/j.1471-4159.2003.02255.x
  48. Tapley P, Lamballe F, Barbacid M. K252a is a selective inhibitor of the tyrosine protein kinase activity of the trk family of oncogenes and neurotrophin receptors. Oncogene. 1992;7:371-381.
  49. Torii K, Nishizawa K, Kawasaki A, Yamashita Y, Katada M, Ito M, Nishimoto I, Terashita K, Aiso S, Matsuoka M. Anti-apoptotic action of Wnt5a in dermal fibroblasts is mediated by the PKA signaling pathways. Cell Signal. 2008;20:1256-1266. https://doi.org/10.1016/j.cellsig.2008.02.013
  50. Takada-Takatori Y, Kume T, Ohgi Y, Fujii T, Niidome T, Sugimoto H, Akaike A. Mechanisms of alpha7-nicotinic receptor up-regulation and sensitization to donepezil induced by chronic donepezil treatment. Eur J Pharmacol. 2008;590:150-156. https://doi.org/10.1016/j.ejphar.2008.06.027
  51. Mantamadiotis T, Lemberger T, Bleckmann SC, Kern H, Kretz O, Martin Villalba A, Tronche F, Kellendonk C, Gau D, Kapfhammer J, Otto C, Schmid W, Schutz G. Disruption of CREB function in brain leads to neurodegeneration. Nat Genet. 2002;31:47-54. https://doi.org/10.1038/ng882
  52. Noriega LG, Feige JN, Canto C, Yamamoto H, Yu J, Herman MA, Mataki C, Kahn BB, Auwerx J. CREB and ChREBP oppositely regulate SIRT1 expression in response to energy availability. EMBO Rep. 2011;12:1069-1076. https://doi.org/10.1038/embor.2011.151
  53. Kosasa T, Kuriya Y, Matsui K, Yamanishi Y. Effect of donepezil hydrochloride (E2020) on basal concentration of extracellular acetylcholine in the hippocampus of rats. Eur J Pharmacol. 1999;380:101-107. https://doi.org/10.1016/S0014-2999(99)00545-2
  54. Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol. 1997;42:159-163. https://doi.org/10.1002/ana.410420205
  55. Hashimoto M, Kazui H, Matsumoto K, Nakano Y, Yasuda M, Mori E. Does donepezil treatment slow the progression of hippocampal atrophy in patients with Alzheimer's disease? Am J Psychiatry. 2005;162:676-682. https://doi.org/10.1176/appi.ajp.162.4.676
  56. Kimura M, Akasofu S, Ogura H, Sawada K. Protective effect of donepezil against Abeta(1-40) neurotoxicity in rat septal neurons. Brain Res. 2005;1047:72-84. https://doi.org/10.1016/j.brainres.2005.04.014
  57. Zimmermann M, Gardoni F, Marcello E, Colciaghi F, Borroni B, Padovani A, Cattabeni F, Di Luca M. Acetylcholinesterase inhibitors increase ADAM10 activity by promoting its trafficking in neuroblastoma cell lines. J Neurochem. 2004;90:1489-1499. https://doi.org/10.1111/j.1471-4159.2004.02680.x
  58. Zhang SJ, Xu TT, Li L, Xu YM, Qu ZL, Wang XC, Huang SQ, Luo Y, Luo NC, Lu P, Shi YF, Yang X, Wang Q. Bushen-Yizhi formula ameliorates cognitive dysfunction through SIRT1/ER stress pathway in SAMP8 mice. Oncotarget. 2017;8:49338-49350. https://doi.org/10.18632/oncotarget.17638

Cited by

  1. Therapeutic Effects of Aripiprazole in the 5xFAD Alzheimer’s Disease Mouse Model vol.22, pp.17, 2020, https://doi.org/10.3390/ijms22179374