DOI QR코드

DOI QR Code

Extratropical Prediction Skill of KMA GDAPS in January 2019

기상청 전지구 예측시스템에서의 2019년 1월 북반구 중고위도 지역 예측성 검증

  • Hwang, Jaeyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Cho, Hyeong-Oh (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lim, Yuna (Department of Earth System Science, University of California) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Eun-Jung (Numerical Model Development Division, Numerical Modeling Center, Korea Meteorological Administration) ;
  • Lim, Jeong-Ock (Numerical Model Development Division, Numerical Modeling Center, Korea Meteorological Administration) ;
  • Boo, Kyung-On (Numerical Model Development Division, Numerical Modeling Center, Korea Meteorological Administration)
  • 황재영 (서울대학교 지구환경과학부) ;
  • 조형오 (서울대학교 지구환경과학부) ;
  • 임유나 (캘리포니아 대학교 어바인캠퍼스 지구시스템과학부) ;
  • 손석우 (서울대학교 지구환경과학부) ;
  • 김은정 (기상청 수치모델링센터 수치모델개발과) ;
  • 임정옥 (기상청 수치모델링센터 수치모델개발과) ;
  • 부경온 (기상청 수치모델링센터 수치모델개발과)
  • Received : 2020.02.24
  • Accepted : 2020.05.11
  • Published : 2020.06.30

Abstract

The Northern Hemisphere extratropical prediction skill of the Korea Meteorological Administration (KMA) Global Data Assimilation and Prediction System (GDAPS) is examined for January 2019. The real-time prediction skill, evaluated with mean squared skill score (MSSS) of 30-90°N geopotential height field at 500 hPa (Z500), is ~8 days in the troposphere. The MSSS of Z500 considerably decreases after 3 days mainly due to the increasing eddy errors. The eddy errors are largely explained by the eddy-phased errors with minor contribution of amplitude errors. In particular, planetary-scale eddy errors are considered as a main reason of rapidly increasing errors. It turns out that such errors are associated with the blocking highs over North Pacific (NP) and Euro-Atlantic (EA) regions. The model overestimates the blocking highs over NP and EA regions in time, showing dependence of blocking predictability on blocking initializations. This result suggests that the extratropical prediction skill could be improved by better representing blocking in the model.

Keywords

References

  1. Atger, F., 1999: The skill of ensemble prediction systems. Mon. Wea. Rev., 127, 1941-1953. https://doi.org/10.1175/1520-0493(1999)127<1941:TSOEPS>2.0.CO;2
  2. Baumhefner, D. P., 1996: Numerical extended-range prediction: Forecast skill using a low-resolution climate model. Mon. Wea. Rev., 124, 1965-1980. https://doi.org/10.1175/1520-0493(1996)124<1965:NERPFS>2.0.CO;2
  3. Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 1059-1072, doi:10.1175/2010BAMS2853.1.
  4. Colucci, S. J., and D. P. Baumhefner, 1998: Numerical prediction of the onset of blocking: A case study with forecast ensembles. Mon. Wea. Rev., 126, 773-784. https://doi.org/10.1175/1520-0493(1998)126<0773:NPOTOO>2.0.CO;2
  5. Coumou, D., A. Robinson, and S. Rahmstorf, 2013: Global increase in record-breaking monthly-mean temperatures. Climatic Change, 118, 771-782, doi:10.1007/s10584-012-0668-1.
  6. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc., 137, 553-597, doi:10.1002/qj.828.
  7. Dunn-Sigouin, E., S.-W. Son, and H. Lin, 2013: Evaluation of Northern Hemisphere blocking climatology in the Global Environment Multiscale Model. Mon. Wea. Rev., 141, 707-727, doi:10.1175/MWR-D-12-00134.1.
  8. Ebert, E. E., 2001: Ability of a poor man's ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480. https://doi.org/10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2
  9. Goddard, L., and Coauthors, 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn., 40, 245-272, doi:10.1007/s00382-012-1481-2.
  10. Hagedorn, R., F. J. Doblas-Reyes, and T. N. Palmer, 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept. Tellus A, 57, 219-233. https://doi.org/10.1111/j.1600-0870.2005.00103.x
  11. Hagedorn, R., R. Buizza, T. M. Hamill, M. Leutbecher, and T. N. Palmer, 2012: Comparing TIGGE multi-model forecasts with reforecast-calibrated ECMWF ensemble forecasts. Q. J. Roy. Meteor. Soc., 138, 1814-1827, doi:10.1002/qj.1895.
  12. Kim, H., S.-W. Son, K. Song, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018a: Prediction skill of GloSea5 model for stratospheric polar vortex intensification events. J. Korean Earth Sci. Soc., 39, 211-227, doi:10.5467/JKESS.2018.39.3.211 (in Korean with English abstract).
  13. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018b: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: Part 1. Geopotential height in the Northern Hemisphere extratropics. Atmosphere, 28, 233-245, doi:10.14191/ATMOS.2018.28.3.233 (in Korean with English abstract).
  14. Lee, S.-M., H.-S. Kang, Y.-H. Kim, Y.-H. Byun, and C. Cho, 2016: Verification and comparison of forecast skill between global seasonal forecasting system version 5 and unified model during 2014. Atmosphere, 26, 59-72, doi:10.14191/Atmos.2016.26.1.059 (in Korean with English abstract).
  15. Lorenz, E., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289-307. https://doi.org/10.1111/j.2153-3490.1969.tb00444.x
  16. Matsueda, M., M. Kyouda, Z. Toth, H. L. Tanaka, and T. Tsuyuki, 2011: Predictability of an atmospheric blocking event that occurred on 15 December 2005. Mon. Wea. Rev., 139, 2455-2470, doi:10.1175/2010MWR3551.1.
  17. Miyakoda, K., G. D. Hembree, R. F. Strickler, and I. Shulman, 1972: Cumulative results of extended forecast experiments. I. Model performance for winter cases. Mon. Wea. Rev., 100, 836-855. https://doi.org/10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2
  18. Molteni, F., R. Buizza, T. N. Palmer, and T. Petroliagis, 1996: The ECMWF ensemble prediction system: Methodology and validation. Q. J. Roy. Meteor. Soc., 122, 73-119. https://doi.org/10.1002/qj.49712252905
  19. Park, S., D.-J. Kim, S.-W. Lee, K.-W. Lee, J. Kim, E.-J. Song, and K.-H. Seo, 2017: Comparison of extended medium-range forecast skill between KMA ensemble, ocean coupled ensemble, and GloSea5. Asia-Pac. J. Atmos. Sci., 53, 393-401, doi:10.1007/s13143-017-0035-2.
  20. Rahmstorf, S., and D. Coumou, 2011: Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. USA, 108, 17905-17909, doi:10.1073/pnas.1101766108.
  21. Richardson, D., R. Buizza, and R. Hagedorn, 2005: First workshop on the THORPEX Interactive Grand Global Ensemble (TIGGE) - Final report. World Meteorological Organization WMO/TD-No. 1273, WWRP/THORPEX No. 5, 39 pp.
  22. Son, S.-W., H. Kim, K. Song, S.-W. Kim, P. Martineau, Y.-K. Hyun, and Y. Kim, 2020: Extratropical prediction skill of the Subseasonal-to-Seasonal (S2S) prediction models. J. Geophys. Res. Atmos., 125, e2019JD031273, doi:10.1029/2019JD031273.
  23. Stan, C., and D. M. Straus, 2009: Stratospheric predictability and sudden stratospheric warming events. J. Geophys. Res. Atmos., 114, D12103. https://doi.org/10.1029/2008JD011277
  24. Tibaldi, S., and F. Molteni, 1990: On the operational predictability of blocking. Tellus A, 42, 343-365. https://doi.org/10.1034/j.1600-0870.1990.t01-2-00003.x
  25. Toth, Z., and E. Kalnay, 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 2317-2330. https://doi.org/10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2
  26. Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.
  27. Ziehmann, C., 2000: Comparison of a single-model EPS with a multi-model ensemble consisting of a few operational models. Tellus A, 52, 280-299. https://doi.org/10.3402/tellusa.v52i3.12266