DOI QR코드

DOI QR Code

실내공기질 지표 이산화탄소 농도제어를 위한 흡착연구

Adsorption Study of IAQ Index CO2

  • ;
  • 조영민 (경희대학교 환경응용과학과) ;
  • 오종민 (경희대학교 환경응용과학과) ;
  • 허정숙 (경희대학교 환경응용과학과)
  • Wang, Jie (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jo, Young Min (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Oh, Jongmin (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Heo, Jeong Sook (Department of Environmental Science and Engineering, Kyung Hee University)
  • 투고 : 2020.04.17
  • 심사 : 2020.05.27
  • 발행 : 2020.06.30

초록

본 연구는 실내공기질의 평가지표인 이산화탄소를 효과적으로 제어하기 위해, 활성탄소 나노섬유를 이용한 흡착·제어기술을 연구하고자 하였다. 연구는 PAN(Polyacrylonitrile) 전구체 용액을 사용한 전기방사(electrospinning) 방법으로 제조된 나노섬유를 고온에서 활성화하여 비표면적과 미세공 부피를 증가시켰다. 다음 단계로, 제조된 활성탄소 나노섬유 표면을 70% HNO3로 산화처리한 후, TEPA(tetraethylenepentamine)용액으로 함침시킴으로 섬유표면의 알칼리성을 증진시켰다. 일련의 조건으로 제조된 활성탄소 섬유들에 대한 이산화탄소(3000 ppm)의 흡착능을 평가하는 실험을 진행하였다. 활성화 시간(30분, 60분, 90분)이 길어질수록 섬유 표면의 비표면적과 총 세공부피가 증가하였는데, 섬유표면의 비표면적은 308.4 ㎡/g에서 839.4 ㎡/g으로 증가하였고, 총 세공부피는 7.882 ㎤/g에서 27.50 ㎤/g으로 증가하였다. TEPA 함침 할 경우, 미세공의 막힘으로 인해 활성탄소섬유의 비표면적과 세공부피가 크게 감소하였지만, HNO3 산화처리에 의해 아민량이 6.42%에서 17.19%로 증가한 결과, 이산화탄소 흡착능을 향상시킬 수 있는 것으로 분석되었다. 결론적으로, 활성탄소 섬유에 대한 60분간 활성화 과정과 HNO3와 TEPA 함침 처리 등의 일련의 과정을 거친 흡착제(60-ANF-HNO3-TEPA)의 저농도(0.3%) 이산화탄소(N2 가스와 혼합)의 흡착능이 가장 우수한 것으로 확인되었다. 이러한 결과는 실내공기 중 저농도 이산화탄소도 효율적으로 흡착·제어할 수 있는 기술로 활용될 수 있으리라 사료된다.

In this study, electrospun nanofibers made of PAN (polyacrylonitrile) were activated through a physical method to obtain an optimized pore structure. In particular, to enhance the surface alkalinity, the activated carbon fibers (ANFs) were impregnated with tetraethylenepentamine (TEPA) with the aid of HNO3. Then, the low level (3,000 ppm) CO2 adsorption capacity for each ANF sample was evaluated. The specific surface area of ANFs increased from 308.4 ㎡/g to 839.4 ㎡/g and the total pore volume increased from 7.882 ㎤/g to 27.50 ㎤/g. Although the TEPA impregnation reduced the specific surface area and pore volume of the ANFs due to blocking of micropores, the HNO3 pre-oxidation enhanced the amino groups tethered, increasing the amine content from 6.42% to 17.19%, and finally, increased the adsorption capacity of CO2. This study showed that the sample 60-ANF-HNO3-TEPA, which was activated for 60 minutes and was impregnated with HNO3 and TEPA, had the best adsorption capacity for low level (0.3%) CO2 (in a binary mixture with N2).

키워드

참고문헌

  1. Adelodun AA, Lim YH, Jo YM. 2014a. Effect of UV-C on pre-oxidation prior amination for preparation of a selective $CO_2$ adsorbent. Journal of Analytical and Applied Pyrolysis. 105: 191-198. https://doi.org/10.1016/j.jaap.2013.11.004
  2. Adelodun AA, Lim YH, Jo YM. 2014b. Stabilization of potassium-doped activated carbon by amination for improved $CO_2$ selective capture. Journal of Analytical and Applied Pyrolysis. 108: 151-159. https://doi.org/10.1016/j.jaap.2014.05.005
  3. Adelodun AA, Jo YM. 2013. Integrated basic treatment of activated carbon for enhanced $CO_2$ selectivity. Applied Surface Science. 286(1): 306-313. https://doi.org/10.1016/j.apsusc.2013.09.076
  4. Chiang YC, Chen YJ, Wu CY. 2017. Effect of relative humidity on adsorption breakthrough of $CO_2$ on activated carbon fibers. Materials. 10(11): 1296. https://doi.org/10.3390/ma10111296
  5. Chingombe P, Saha B, Wakeman RJ. 2005. Surface modification and characterisation of a coal-based activated carbon. Carbon. 43(15): 3132-3143. https://doi.org/10.1016/j.carbon.2005.06.021
  6. Han Y, Li R, Bruckner C, Vadas TM. 2018. Controlling the surface oxygen groups of polyacrylonitrile-based carbon nanofiber membranes while limiting fiber degradation. Journal of Carbon Research. 4(3): 40. https://doi.org/10.3390/c4030040
  7. Houshmand A, Wan Daud WMA, Shafeeyan MS. 2011. Exploring potential methods for anchoring amine groups on the surface of activated carbon for $CO_2$ adsorption. Separation Science and Technology. 46(7): 1098-1112. https://doi.org/10.1080/01496395.2010.546383
  8. Hwang SH, Kim DW, Jung DW, Jo YM. 2016. Impregnation of nitrogen functionalities on activated carbon fiber adsorbents for low-level $CO_2$ capture. Jouranl of Korean Society for Atmospheric Environment. 32(2): 176-183. [Korean Literature] https://doi.org/10.5572/KOSAE.2016.32.2.176
  9. Jiao J, Cao J, Xia Y, Zhao LZ. 2016. Improvement of adsorbent materials for $CO_2$ capture by amine functionalized mesoporous silica with worm-hole framework structure. Chemical Engineering Journal. 306(15): 9-16. https://doi.org/10.1016/j.cej.2016.07.041
  10. Lim G, Lee KB, Ham HC. 2016. Effect of Ncontaining functional groups on $CO_2$ adsorption of carbonaceous materials: A density functional theory approach. The Journal of Physical Chemistry. 120(15): 8087-8095.
  11. Lim HH, Lim YH, Jo YM. 2012. Characterization of AC-based adsorbents for $CO_2$ capture. Journal of Korean Society for Indoor Environment. 9(1): 9-18. [Korean Literature]
  12. Lim HY. 2014. $CO_2$ capture using amino acid salts and fixation by alkali aqueous solution. Ph.D. dissertation. Kyung Hee University, Seoul. [Korean Literature]
  13. Lim YH, Adelodun AA, Kim DW, Jo YM. 2016. Surface impregnation of glycine to activated carbon adsorbent for dry capture of carbon dioxide. Asian Journal of Atmospheric Environment. 10(2): 99-113. https://doi.org/10.5572/ajae.2016.10.2.099
  14. Mahardiani L, Saputro S, Baskoro F, Zinki NM, Taufiq M. 2019. Facile synthesis of carboxylated activated carbon using green approach for water treatment. IOP Conferences Series: Materials Science and Engineering. 578: 012003. https://doi.org/10.1088/1757-899X/578/1/012003
  15. Masoud JL, Soheil K, Abdelhamid S. 2019. Stability of amine-functionalized $CO_2$ adsorbents: a multifaceted puzzle. Chemical Society Reviews. 48(12): 3320-3405. https://doi.org/10.1039/C8CS00877A
  16. Nausika Q, Plaza MG, Rubiera F, Pevida C. 2016. Water vapor adsorption on biomass based carbons under post-Combustion $CO_2$ capture conditions: Effect of posttreatment. Materials. 9(5): 359. https://doi.org/10.3390/ma9050359
  17. Pascal D, Robert S, Saskia H. 2018. Non-linear thermogravimetric mass spectrometry of carbon materials providing direct speciation separation of oxygen functional groups. Carbon. 130: 614-622. https://doi.org/10.1016/j.carbon.2018.01.047
  18. Plaza MG, Pevida C, Arenillas A, Rubiera F, Pis JJ. 2007. $CO_2$ capture by adsorption with nitrogen enriched carbons. Fuel. 86(14): 2204-2212. https://doi.org/10.1016/j.fuel.2007.06.001
  19. Rao N, Wang M, Shang ZM, Hou YW, Fan GZ, Li JF. 2018. $CO_2$ adsorption by aminefunctionalized MCM-41: A comparison between impregnation and grafting modification methods. Energy Fuels. 32(1): 670-677. https://doi.org/10.1021/acs.energyfuels.7b02906
  20. Rajagopalan R, Balakrishnan A. 2018. Innovations in Engineered Porous Materials for Energy Generation and Storage Applications. CRC Press. 116.
  21. Rivera-Utrilla J, Sanchez-Polo M, Gamez-Serrano V, Alvarez PM, Alvim-Ferraz, MCM, Dias JM. 2011. Activated carbon modifications to enhance its water treatment applications: An overview. Journal of Hazardous Materials. 187(1-3): 1-23. https://doi.org/10.1016/j.jhazmat.2011.01.033
  22. Ros TG, Dillen AJ, Geus JW, Koningsberger DC. 2002. Surface Oxidation of Carbon Nanofibres. A European Journal. 8(5): 1151-1162. https://doi.org/10.1002/1521-3765(20020301)8:5<1151::AID-CHEM1151>3.0.CO;2-#
  23. Satish U, Mendell MJ, Shekhar K, Hotchi T, Sullivan D, Streufert S, Fisk WJ. 2012. Is $CO_2$ an indoor pollutant? Direct effects of low-to-moderate $CO_2$ concentrations on human decision-making performance. Environmental Health Perspectives. 120(12): 1671-1677. https://doi.org/10.1289/ehp.1104789
  24. Shafeeyan MS, Wan Daud WMA, Houshmand A, Shamiri A. 2010. A review on surface modification of activated carbon for carbon dioxide adsorption. Jouranl of Analytical and Applied Pyrolysis. 89(2): 143-151. https://doi.org/10.1016/j.jaap.2010.07.006
  25. Thakur VK, Thakur MK. 2015. Chemical Functionalization of Carbon Nanomaterials: Chemistry and Applications, CRC Press LCC.
  26. Tiwari S, Bijwe J, Panier S. 2011. Tribological studies on Polyetherimide composites based on carbon fabric with optimized oxidation treatment. Wear. 271(9-10): 2252-2260. https://doi.org/10.1016/j.wear.2010.11.052
  27. Tran MQ, Ho KC, Kalinka G, Shaffer SP, Bismarck A. 2008. Carbon fibre reinforced poly(vinylidene fluoride): Impact of matrix modification on fiber/polymer adhesion. Compsites Science and Technology. 68(7): 1766-1776. https://doi.org/10.1016/j.compscitech.2008.02.021
  28. Vehvilainen T, Lindholm H, Rintamaki H, Paakkanen R, Hirvonen A, Niemi O, Vinha J. 2016. High indoor $CO_2$ concentrations in an office environment increases the transcutaneous $CO_2$ level and sleepiness during cognitive work. Journal of Occupational and Environmental Hygiene. 13(1): 19-29. https://doi.org/10.1080/15459624.2015.1076160
  29. Vinke P, van der Eijk M, Verbree M, Voskamp AF, van Bekkum H. 1994. Modification of the surfaces of a gas-activated carbon and a chemically activated carbon with nitric acid, hypochlorite, and ammonia. Carbon. 32(4): 675-686. https://doi.org/10.1016/0008-6223(94)90089-2
  30. Wang JT, Wang M, Li WC, Qiao WM, Long DH, Ling LC. 2015. Application of polyethylenimineimpregnated solid adsorbents for direct capture of low-concentration $CO_2$. The Global Home of Chemical Engineers. 61(3): 972-980.
  31. Wang XF, Li B. 2014. Electrospun nanofibrous sorbents and membranes for carbon dioxide capture, in Electrospun Nanofibers for Energy and Environment Applications. Edited by Ding, B., Yu, J. Y., Springer, Berlin. 249-263.
  32. Ye Q, Jiang JQ, Wang CX, Liu YM, Pan H, Shi Y. 2012. Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature. Energy Fuels. 26(4): 2497-2504. https://doi.org/10.1021/ef201699w
  33. Yu J, Chuang SSC. 2017. The role of water in $CO_2$ capture by amine. Industrial & Engineering Chemistry Research. 56(21): 6337-6347. https://doi.org/10.1021/acs.iecr.7b00715
  34. Zhang X, Pei X, Jia Q, Wang Q. 2009. Effects of CFs surface treatment on the tribological properties of 2D woven carbon fabric/ polyimide composites. Applied Physics A. 95(3): 793-799. https://doi.org/10.1007/s00339-009-5073-x