DOI QR코드

DOI QR Code

A Simulator Development for Determining the Sonar Sensor Configuration of Unmanned Underwater Vehicles Based on a Hold-at-Risk Scenario

위험제어 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터 개발

  • Received : 2020.02.14
  • Accepted : 2020.04.19
  • Published : 2020.06.30

Abstract

This study develops a simulator for determining the sonar sensor configuration of unmanned underwater vehicles (UUVs) based on a scenario, in order for UUVs to conduct an effective anti-submarine warfare (ASW). First, we analyze the missions and operational concepts of UUVs in the field of ASW, and then select a Hold-at-Risk scenario as the one with the highest priority. Next, for modeling the components of a simulator, the motion, acoustic characteristic, and environment condition of the platforms (UUV and target submarine) are specified. Especially, based on the beam pattern of each sonar configuration considered in this paper, the passive sonar equation is used to verify target detection, and we further estimate the azimuth and elevation of the target using amplitude and phase of the received signal, respectively. The simulation results show the performance tendency depending on the sonar sensor configurations of a UUV, and the simulator provides a high applicability under various scenarios.

본 연구에서는 무인잠수정의 효과적인 대잠전 수행을 위해, 시나리오 기반의 무인잠수정 소나 센서 배열 선정을 위한 시뮬레이터를 개발하였다. 먼저, 대잠전 분야에서 무인잠수정의 임무 및 운용개념을 분석하고, 가장 주요한 임무 중 하나인 위험제어(Hold at Risk)를 시뮬레이션 시나리오로 선정하였다. 다음으로, 시뮬레이터 구성요소 모델을 위하여, 플랫폼별(무인잠수정, 표적 잠수함) 운동모델, 음향모델 및 환경모델을 제시하였다. 특히 음향모델에서는 센서 배열에 따른 빔패턴을 기반으로 수동 소나방정식을 이용하여 탐지여부를 판단하였다. 또한, 표적의 방위 및 고각 추정을 위하여 진폭기반 방위 추정법과 위상 모노펄스 추정기법을 각각 적용하였다. 개발된 시뮬레이터를 통해 센서 배열 변화에 따른 결과의 경향성이 기본적인 빔패턴 이론과 일치하는 것을 보여주며, 다양한 시나리오에 대한 적용 가능성을 시사한다.

Keywords

References

  1. Allard, Y. and E. Shahbazian (2014) Unmanned Undersea Vehicles (UUV) Information Study, OODA Technologies, Canada.
  2. Button, R.W., J. Kamp, T.B. Curtin and J. Dryden (2009) A Survey of Missions for Unmanned Undersea Vehicles, RAND National Defense Research Institute, USA.
  3. Barry D. V., K. M. Buckley (1988) "Beamforming: A Versatile Approach to Spartial Filtering", IEEE ASSP Magazine, 5(2), 4-24 https://doi.org/10.1109/53.665
  4. Hwang, A., M. Kim and S.Y. Lee (2012) "A study of simulation model for effectiveness analysis simulation of unmanned underwater vehicle for mine searching", Journal of the Korea Institute of Military Science and Technology, 15(4), 410-416. https://doi.org/10.9766/KIMST.2012.15.4.410
  5. Hwang, A., M. Kim, S.Y. Lee, J. Yoon and C. Kim (2011) "A study on unmanned underwater vehicle operational performance analysis for mine search operations", Journal of the Korea Institute of Military Science and Technology, 14(5), 781-787. https://doi.org/10.9766/KIMST.2011.14.5.781
  6. Kang, H.B., H.J. Lee, S.H. Kim and H.G. Park (2017) "Allocations and robust fuzzy control for waypoints tracking of large displacement unmanned underwater vehicles", The Transactions of the Korean Institute of Electrical Engineers, 66(2), 402-408. https://doi.org/10.5370/KIEE.2017.66.2.402
  7. Kang, H., S. Hong and J. Sur (2019) "A study on the operation scenarios of unmanned underwater vehicles for an ASW-ISR", Proceedings of the Conference of the Korea Institute of Military Science and Technology, 2239-2240.
  8. Lee, O.-S. (2017) "A direction of development of large UUVs for anti-submarine warfare connected to the future warfare development trend of the Navy", Defense & Technology, 457, 80-89.
  9. Lee, P.-H., S.-K. Park, S.T. Kwon, S. Park, H. Jung, M.-S. Park and P.-M. Lee (2015) "Dynamic modeling of autonomous underwater vehicle for underwater surveillance and parameter tuning with experiments", Journal of Ocean Engineering and Technology, 29 (6), 488-498. https://doi.org/10.5574/KSOE.2015.29.6.488
  10. Schulkin, M., & Marsh, H. W. (1962). Sound absorption in sea water, The Journal of the Acoustical Society of America, 34(6), pp.864-865. https://doi.org/10.1121/1.1918213
  11. Sim, H. K., Jung, M. A., & Kim, S. C. (2015). A performance analysis of phase comparison monopulse algorithm for antenna spacing and antenna array. The Journal of Korean Institute of Communications and Information Sciences, 40(7), 1413-1419. https://doi.org/10.7840/kics.2015.40.7.1413
  12. US Navy (2004) The Navy Unmanned Undersea Vehicle (UUV) Master Plan, Department of the Navy, USA.
  13. Yoo, T.-S. and M.H. Kim (2014) "Analysis of integrated navigation performance for sensor selection of unmanned underwater vehicle", Journal of Ocean Engineering and Technology, 28(6), 566-573. https://doi.org/10.5574/KSOE.2014.28.6.566
  14. Yoo, T.-S., M.H. Kim, J.H. Hwang and S.I. Yoon (2016) "Development of navigation HILS system for integrated navigation performance analysis of large diameter unmanned underwater vehicle", Journal of Ocean Engineering and Technology, 30 (5), 367-373. https://doi.org/10.5574/KSOE.2016.30.5.367