DOI QR코드

DOI QR Code

Can a Synbiotic Supplementation Contribute to Decreasing Anti-Tissue Transglutaminase Levels in Children with Potential Celiac Disease?

  • Demiroren, Kaan (Department of Pediatric Gastroenterology, University of Health Sciences, Yuksek Ihtisas Teaching Hospital)
  • Received : 2020.03.04
  • Accepted : 2020.03.26
  • Published : 2020.07.15

Abstract

Purpose: Synbiotics can alleviate some intestinal pathologies or prevent trigger mechanisms for some diseases such as celiac disease (CD). If patients with high levels of anti-tissue transglutaminase (anti-tTG) immunoglobulin A (IgA) antibodies have normal duodenal histology, they are followed as potential CD patients. The aim of this study was to investigate the effect of synbiotic use on the blood levels of anti-tTG antibodies in children. Methods: Eighty-two patients with high anti-tTG levels were included in this study. Patients were randomly divided into two groups. The synbiotic group was treated with a daily dose of a synbiotic including multi-strain probiotics for 20 days. The control group was not administered any medication. Anti-tTG values at baseline and repeat measurements and the percentage change in anti-tTG levels between groups were compared. Results: The anti-tTG level at baseline was 36 U/mL (interquartile range [IQR], 26.4-68 U/mL) in the synbiotic group, and it decreased significantly to 13 U/mL (IQR, 6.5-27.5 U/mL) after 20 days (p<0.05). The anti-tTG level at baseline was 46 U/mL (IQR, 31-89 U/mL) in the control group, which also decreased significantly to 23 U/mL (IQR, 7-41 U/mL) after 20 days (p<0.05). Anti-tTG levels exhibited 73% and 56% decreases in the synbiotic and control groups, respectively (p<0.05). Conclusion: It may be speculated that a synbiotic supplementation can contribute to decreasing anti-tTG levels in children with potential CD.

Keywords

References

  1. Iannitti T, Palmieri B. Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 2010;29:701-25. https://doi.org/10.1016/j.clnu.2010.05.004
  2. Gagliardi A, Totino V, Cacciotti F, Iebba V, Neroni B, Bonfiglio G, et al. Rebuilding the gut microbiota ecosystem. Int J Environ Res Public Health 2018;15:1679. https://doi.org/10.3390/ijerph15081679
  3. Husby S, Koletzko S, Korponay-Szabo IR, Mearin ML, Phillips A, Shamir R, et al.ESPGHAN Working Group on Coeliac Disease Diagnosis; ESPGHAN Gastroenterology Committee; European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J Pediatr Gastroenterol Nutr 2012;54:136-60. https://doi.org/10.1097/MPG.0b013e31821a23d0
  4. Guandalini S, Assiri A. Celiac disease: a review. JAMA Pediatr 2014;168:272-8. https://doi.org/10.1001/jamapediatrics.2013.3858
  5. Silvester JA, Kurada S, Szwajcer A, Kelly CP, Leffler DA, Duerksen DR. Tests for serum transglutaminase and endomysial antibodies do not detect most patients with celiac disease and persistent villous atrophy on gluten-free diets: a meta-analysis. Gastroenterology 2017;153:689-701.e1. https://doi.org/10.1053/j.gastro.2017.05.015
  6. Di Sabatino A, Vanoli A, Giuffrida P, Luinetti O, Solcia E, Corazza GR. The function of tissue transglutaminase in celiac disease. Autoimmun Rev 2012;11:746-53. https://doi.org/10.1016/j.autrev.2012.01.007
  7. Lindfors K, Maki M, Kaukinen K. Transglutaminase 2-targeted autoantibodies in celiac disease: pathogenetic players in addition to diagnostic tools? Autoimmun Rev 2010;9:744-9. https://doi.org/10.1016/j.autrev.2010.06.003
  8. Kumar J, Kumar M, Pandey R, Chauhan NS. Physiopathology and management of gluten-induced celiac disease. J Food Sci 2017;82:270-7. https://doi.org/10.1111/1750-3841.13612
  9. Vriezinga SL, Auricchio R, Bravi E, Castillejo G, Chmielewska A, Crespo Escobar P, et al. Randomized feeding intervention in infants at high risk for celiac disease. N Engl J Med 2014;371:1304-15. https://doi.org/10.1056/NEJMoa1404172
  10. Borrelli M, Maglio M, Korponay-Szabo IR, Vass V, Mearin ML, Meijer C, et al. Intestinal anti-transglutaminase 2 immunoglobulin A deposits in children at risk for coeliac disease (CD): data from the PreventCD study. Clin Exp Immunol 2018;191:311-7. https://doi.org/10.1111/cei.13078
  11. Veeraraghavan G, Leffler DA, Kaswala DH, Mukherjee R. Celiac disease 2015 update: new therapies. Expert Rev Gastroenterol Hepatol 2015;9:913-27. https://doi.org/10.1586/17474124.2015.1033399
  12. Kho ZY, Lal SK. The human gut microbiome - a potential controller of wellness and disease. Front Microbiol 2018;9:1835. https://doi.org/10.3389/fmicb.2018.01835
  13. Losurdo G, Principi M, Iannone A, Ierardi E, Di Leo A. The interaction between celiac disease and intestinal microbiota. J Clin Gastroenterol 2016;50(Suppl 2):145-7.
  14. Marasco G, Di Biase AR, Schiumerini R, Eusebi LH, Iughetti L, Ravaioli F, et al. Gut microbiota and celiac disease. Dig Dis Sci 2016;61:1461-72. https://doi.org/10.1007/s10620-015-4020-2
  15. Girbovan A, Sur G, Samasca G, Lupan I. Dysbiosis a risk factor for celiac disease. Med Microbiol Immunol 2017;206:83-91. https://doi.org/10.1007/s00430-017-0496-z
  16. Cenit MC, Olivares M, Codoner-Franch P, Sanz Y. Intestinal microbiota and celiac disease: cause, consequence or co-evolution? Nutrients 2015;7:6900-23. https://doi.org/10.3390/nu7085314
  17. Galipeau HJ, McCarville JL, Huebener S, Litwin O, Meisel M, Jabri B, et al. Intestinal microbiota modulates gluten-induced immunopathology in humanized mice. Am J Pathol 2015;185:2969-82. https://doi.org/10.1016/j.ajpath.2015.07.018
  18. Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venalainen J, Maki M, et al. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol 2008;152:552-8. https://doi.org/10.1111/j.1365-2249.2008.03635.x
  19. Smecuol E, Hwang HJ, Sugai E, Corso L, Chernavsky AC, Bellavite FP, et al. Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol 2013;47:139-47. https://doi.org/10.1097/MCG.0b013e31827759ac
  20. Orlando A, Linsalata M, Notarnicola M, Tutino V, Russo F. Lactobacillus GG restoration of the gliadin induced epithelial barrier disruption: the role of cellular polyamines. BMC Microbiol 2014;14:19. https://doi.org/10.1186/1471-2180-14-19
  21. De Angelis M, Rizzello CG, Fasano A, Clemente MG, De Simone C, Silano M, et al. VSL#3 probiotic preparation has the capacity to hydrolyze gliadin polypeptides responsible for Celiac Sprue. Biochim Biophys Acta 2006;1762:80-93. https://doi.org/10.1016/j.bbadis.2005.09.008
  22. Harnett J, Myers SP, Rolfe M. Probiotics and the microbiome in celiac disease: a randomised controlled trial. Evid Based Complement Alternat Med 2016;2016:9048574.
  23. Francavilla R, Piccolo M, Francavilla A, Polimeno L, Semeraro F, Cristofori F, et al. Clinical and microbiological effect of a multispecies probiotic supplementation in celiac patients with persistent IBS-type symptoms: a randomized, double-blind, placebo-controlled, multicenter trial. J Clin Gastroenterol 2019;53:e117-25. https://doi.org/10.1097/mcg.0000000000001023
  24. De Palma G, Cinova J, Stepankova R, Tuckova L, Sanz Y. Pivotal advance: bifidobacteria and Gram-negative bacteria differentially influence immune responses in the proinflammatory milieu of celiac disease. J Leukoc Biol 2010;87:765-78. https://doi.org/10.1189/jlb.0709471
  25. Husby S, Koletzko S, Korponay-Szabo I, Kurppa K, Mearin ML, Ribes-Koninckx C, et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition guidelines for diagnosing coeliac disease 2020. J Pediatr Gastroenterol Nutr 2020;70:141-56. https://doi.org/10.1097/mpg.0000000000002497