DOI QR코드

DOI QR Code

Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT

  • Mohammadimehr, Mehdi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Firouzeh, Saeed (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Pahlavanzadeh, Mahsa (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Heidari, Yaser (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Irani-Rahaghi, Mohsen (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.04.13
  • Accepted : 2020.06.13
  • Published : 2020.07.25

Abstract

The aim of this research is to investigate free vibration of a novel five layer Timoshenko microbeam which consists of a transversely flexible porous core made of Al-foam, two graphen platelets (GPL) nanocomposite reinforced layers to enhance the mechanical behavior of the structure as well as two piezo-magneto-electric face sheets layers. This microbeam is subjected to a thermal load and resting on Pasternak's foundation. To accomplish the analysis, constitutive equations of each layer are derived by means of nonlocal strain gradient theory (NSGT) to capture size dependent effects. Then, the Hamilton's principle is employed to obtain the equations of motion for five layer Timoshenko microbeam. They are subsequently solved analytically by applying Navier's method so that discretized governing equations are determined in form of dynamic matrix giving the possibility to gain the natural frequencies of the Timoshenko microbeam. Eventually, after a validation study, the numerical results are presented to study and discuss the influences of various parameters such as nonlocal parameter, strain gradient parameter, aspect ratio, porosity, various volume fraction and distributions of graphene platelets, temperature change and elastic foundation coefficients on natural frequencies of the sandwich microbeam.

Keywords

Acknowledgement

The authors would like to thank the referees for their valuable comments. Also, they are thankful to the Iranian Nanotechnology Development Committee for supporting this research and the University of Kashan under Grant No. 8911238/14.

References

  1. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  2. Adeniyi, A.G., Adeoye, S.A., Onifade, D.V. and Joshua, O.I. (2019), "Multi-scale finite element analysis of effective elastic property of sisal fiber-reinforced polystyrene composites", Mech. Adv. Mater. Struct., 1-9. https://doi.org/10.1080/15376494.2019.1660016.
  3. Akgoz, B. and Civalek, O. (2018), "Vibrational characteristics of embedded microbeams lying on a two-parameter elastic foundation in thermal environment", Compos. B. Eng., 150, 68-77. https://doi.org/10.1016/j.compositesb.2018.05.049.
  4. AkhavanAlavi, S.M., Mohammadimehr, M. and Edjtahed, S.H. (2019), "Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method", Eur. J. Mech. A-Solid, 74, 449-461. https://doi.org/10.1016/j.euromechsol.2018.12.008.
  5. Amir, S., Bidgoli, E.M.R. and Arshid, E. (2018), "Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2018.1487612.
  6. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Contin., 59(1), 345-359. https:// doi:10.32604/cmc.2019.06641.
  7. Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermo-elastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068.
  8. Apuzzo, A., Barretta, R., Faghidian, S.A., Luciano, R. and Marotti de Sciarra, F. (2018), "Free vibrations of elastic beams by modified nonlocal strain gradient theory", Int. J. Eng. Sci., 133, 99-108. https://doi.org/10.1016/j.ijengsci.2018.09.002.
  9. Arefi, M., Bidgoli, E.M.R., Dimitri, R. and Tornabene, F. (2018a), "Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Aerosp. Sci. Technol., 81, 108-117. https://doi.org/10.1016/j.ast.2018.07.036.
  10. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9.
  11. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. B. Eng., 168, 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  12. Arefi, M., Zamani, M.H. and Kiani, M. (2018b), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Int. Mater. Syst. Struct., 29(5), 774-786. https://doi.org/10.1177/1045389X17721039.
  13. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  14. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2019), "Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution", J. Vib. Control, 25(23-24), 2875-2893. https://doi.org/10.1177/1077546319860314.
  15. Barati, M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct., 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.08.2
  16. Baroudi, S. and Najar, F. (2019), "Dynamic analysis of a nonlinear nanobeam with flexoelectric actuation", J. Appl. Phys., 125(4), 044503. https://doi.org/10.1063/1.5057727.
  17. Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
  18. Berghouti, H., Adda Bedia, E.A., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351.
  19. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  20. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  21. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019.
  22. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S.R. (2019), "Dynamic Analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. https://doi.org/10.12989/anr.2019.7.3.191.
  23. Bui, T.Q., Khosravifard, A., Zhang, Ch. Hematiyan, M.R. and Golub, M.V. (2013), "Dynamic analysis of sandwich beams with functionally graded core using a truly meshfree radial point interpolation method", Eng. Struct., 47, 90-104. https://doi.org/10.1016/j.engstruct.2012.03.041.
  24. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  25. Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.T.T. and Duc, N.D. (2018), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.3.243.
  26. Chen, D. Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
  27. Dong, Y., Li, X., Gao, K., Li, Y. and Yang, J. (2020b), "Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment", Nonlinear Dyn., 99, 981-1000. https://doi.org/10.1007/s11071-019-05297-8.
  28. Dong, Y., Li, Y., Li, X. and Yang, J. (2020a), "Active control of dynamic behaviors of graded graphene reinforced cylindrical shells with piezoelectric actuator/sensor layers", App. Math. Model., 82, 252-270. https://doi.org/10.1016/j.apm.2020.01.054.
  29. Dong, Y.H., Li, Y.H., Chen, D. and Yang, J. (2018a), "Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion", Compos. B. Eng., 145, 1-13. https://doi.org/10.1016/j.compositesb.2018.03.009.
  30. Dong, Y.H., Zhu, B., Wang, Y., He, L.W., Li, Y.H. and Yang, J. (2019), "Analytical prediction of the impact response of graphene reinforced spinning cylindrical shells under axial and thermal loads", Appl. Math. Model., 71, 331-348. https://doi.org/10.1016/j.apm.2019.02.024.
  31. Dong, Y.H., Zhu, B., Wang, Y., Li, Y.H. and Yang, J. (2018b), "Nonlinear free vibration of graded graphene reinforced cylindrical shells: Effects of spinning motion and axial load", J. Sound Vib., 437, 79-96. https://doi.org/10.1016/j.jsv.2018.08.036.
  32. Draiche, K., Bousahla, A.A., Tounsi, A., Alwabli, A.S., Tounsi, A. and Mahmoud, S.R. (2019), "Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory", Comput. Concrete, 24(4), 369-378. https://doi.org/10.12989/cac.2019.24.4.369.
  33. Draoui, A., Zidour, M., Tounsi, A. and Adim, B. (2019), "Static and dynamic behavior of nanotubes-reinforced sandwich plates using (FSDT)", J. Nano Res., 57, 117-135. https://doi.org/10.4028/www.scientific.net/JNanoR.57.117.
  34. Ebrahimi, F. and Barati, M.R. (2017), "Hygrothermal effects on vibration characteristics of viscoelastic FG nanobeams based on nonlocal strain gradient theory", Compos. Struct., 159, 433-444. https://doi.org/10.1016/j.compstruct.2016.09.092.
  35. Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of embedded graphene platelets-reinforced composite microplates", Eur. Phys. J. Plus, 133, 151. https://doi.org/10.1140/epjp/i2018-11956-5.
  36. Ebrahimi, F. and Salari, E. (2015), "Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions", Compos. B. Eng., 78, 272-290. https://doi.org/10.1016/j.compositesb.2015.03.068.
  37. Fang, W., Yu, T., Lich, L.V. and Bui, T.Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
  38. Farajpour, M.R., Shahidi, A.R., Hadi, A. and Farajpour, A. (2019), "Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms", Mech. Adv. Mater. Struct., 26(17), 1469-1481. https://doi.org/10.1080/15376494.2018.1432820.
  39. Ganapathi, M., Anirudh, B., Anant, C. and Polit, O. (2019), "Dynamic characteristics of functionally graded graphene reinforced porous nanocomposite curved beams based on trigonometric shear deformation theory with thickness stretch effect", Mech Adv. Mater. Struct., 1-12. https://doi.org/10.1080/15376494.2019.1601310.
  40. Ghasemi, H.S., Park, H. and Rabczuk, T. (2017), "A level-set based IGA formulation for topology optimization of flexoelectric materials", Comput. Methods Appl. Mech. Eng., 313, 239-258. https://doi.org/10.1016/j.cma.2016.09.029.
  41. Ghasemi, H.S., Park, H. and Rabczuk, T. (2018), "A multi-material level set-based topology optimization of flexoelectric composites", Comput. Methods Appl. Mech. Eng., 332, 47-62. https://doi.org/10.1016/j.cma.2017.12.005.
  42. Ghorbanpour Arani, A. and Zamani, M.H. (2018), "Nonlocal free vibration analysis of FG-porous shear and normal deformable sandwich nanoplate with piezoelectric face sheets resting on silica aerogel foundation", Arab. J. Sci. Eng., 43(9), 4675-4688. https://doi.org/10.1007/s13369-017-3035-8.
  43. Ghorbanpour Arani, A. and Zamani, M.H. (2019), "Investigation of electric field effect on size-dependent bending analysis of functionally graded porous shear and normal deformable sandwich nanoplate on silica Aerogel foundation", J. Sandw. Struct. Mater., 21(8), 2700-2734. https://doi.org/10.1177/1099636217721405.
  44. Ghorbanpour Arani, A. Babaakbar Zarei, H. and Pourmousa, P. (2019), "Free vibration response of FG porous sandwich micro-beam with flexoelectric face-sheets resting on modified Silica Aerogel foundation", Int. J. Appl. Mech., 11(09), 1950087. https://doi.org/10.1142/S175882511950087x.
  45. Ghorbanpour Arani, A. Khani, M. and Khoddami Maraghi, Z. (2018), "Dynamic analysis of a rectangular porous plate resting on an elastic foundation using high-order shear deformation theory", J. Vib. Control, 24(16), 3698-3713. https://doi.org/10.1177/1077546317709388.
  46. Ghorbanpour Arani, A., Khoddami Maraghi, Z., Khani, M. and Alinaghian, I. (2017), "Free vibration of embedded porous plate using third-order shear deformation and poroelasticity theories", J. Eng., 2017, Article ID 1474916, 13. https://doi.org/10.1155/2017/1474916.
  47. Ghorbanpour Arani, A., Rousta Navi, B. and Mohammadimehr, M. (2016), "Surface stress and agglomeration effects on nonlocal biaxial buckling polymeric nanocomposite plate reinforced by CNT using various approaches", Adv. Compos. Mater., 25(5), 423-441. https://doi.org/10.1080/09243046.2015.1052189.
  48. Hajmohammad, M.H., Zarei, M.S., Sepehr, M. and Abtahi, N. (2018), "Bending and buckling analysis of functionally graded annular microplate integrated with piezoelectric layers based on layerwise theory using DQM", Aerosp. Sci. Technol., 79, 679-688. https://doi.org/10.1016/j.ast.2018.05.055.
  49. Halpin, J.C. and Kardos, J.L. (1976), "The Halpin-Tsai equations: a review", Polym. Eng. Sci., 16(5), 344-352. https://doi.org/10.1002/pen.760160512.
  50. Hamdia, M., Ghasemi, Kh., Zhuang, H., Alajlan, X.N. and Rabczuk, T. (2018), "Sensitivity and uncertainty analysis for flexoelectric nanostructures", Comput. Meth. Appl. Mech. Eng., 337, 95-109. https://doi.org/10.1016/j.cma.2018.03.016.
  51. Heydari, A. (2018), "Exact vibration and buckling analyses of arbitrary gradation of nano-higher order rectangular beam", Steel Compos Struct., 28(5), 589-606. https://doi.org/10.12989/scs.2018.28.5.589.
  52. Hussain, M., Nawaz Naeem, M., Tounsi, A. and Taj, M. (2019), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.
  53. Jandaghian, A. and Rahmani, O. (2016), "Free vibration analysis of magneto-electro-thermo-elastic nanobeams resting on a Pasternak foundation", Smart Mater. Struct., 25(3), 035023. https://doi.org/10.1088/0964-1726/25/3/035023.
  54. Javani, R., Rabani Bidgoli, M. and Kolahchi, R. (2019), "Buckling analysis of plates reinforced by Graphene platelet based on Halpin-Tsai and Reddy theories", Steel Compos. Struct., Int. J., 31(4), 419-427. https://doi.org/10.12989/scs.2019.31.4.419.
  55. Kaddari, M., Kaci, Bousahla, A.A., Tounsi, A. Bourada, F., Tounsi, A., Bedia, E.A.A. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and Free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  56. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  57. Karami, B., Janghorban, M. and Tounsi, A. (2019), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., 35, 1297-1316. https://doi.org/10.1007/s00366-018-0664-9.
  58. Karimiasl, M., Kargarfard, K. and Ebrahimi, F. (2019), "Buckling of magneto-electro-hygro-thermal piezoelectric nanoplates system embedded in a visco-Pasternak medium based on nonlocal theory", Microsyst. Techol., 25(3), 1031-1042. https://doi.org/10.1007/s00542-018-4148.
  59. Karroubi, R. and Irani-Rahaghi, M. (2019), "Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis", Appl. Math. Mech., 40(4), 563-578. https://doi.org/10.1016/j.compositesb.2013.03.008.
  60. Khaniki, H.B. Hashemi, H. and Nezamabadi, A. (2018), "Buckling analysis of nonuniform nonlocal strain gradient beams using generalized differential quadrature method", Alex. Eng. J., 57(3), 1361-1368. https://doi.org/10.1016/j.aej.2017.06.001.
  61. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi. A. and Mahmoud, S.R. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36, 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  62. Kiani, Y. and Mirzaei, M. (2019), "Isogeometric thermal postbuckling of FG-GPLRC laminated plates", Steel Compos. Struct., 32(6), 821-832. https://doi.org/10.12989/scs.2019.32.6.821.
  63. Kim, C., Ko, Y., Kim, T., Yoo, C.S., Choi, B., Han, S.H. Jang, Y.H., Kim, Y. and Kim, N. (2018), "Design and evaluation of an experimental system for monitoring the mechanical response of piezoelectric energy harvesters", Smart Struct. Syst., 22(2), 133-137. https://doi.org/10.12989/sss.2018.22.2.133.
  64. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  65. Kumar, B.R. and Hariharan, S.S. (2019), "Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites", Steel Compos. Struct., 33(2), 299-306. https://doi.org/10.12989/scs.2019.33.2.299.
  66. Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
  67. Liu, C., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031.
  68. Liu, H., Lv, Z. and Wu, H. (2019a), "Nonlinear free vibration of geometrically imperfect functionally graded sandwich nanobeams based on nonlocal strain gradient theory", Compos. Struct., 214, 47-61. https://doi.org/10.1016/j.compstruct.2019.01.090.
  69. Liu, S., Yu, T., van Lich, L., Yin, S. and Bui, Q.T. (2018), "Size effect on cracked functional composite microplates by an XIGA-based effective approach", Meccanica, 53, 2637-2658. https://doi.org/10.1007/s11012-018-0848-9.
  70. Liu, S., Yu, T., van Lich, L., Yin, S. and Bui, T.Q. (2019b), "Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis", Compos. Struct., 212, 173-187. https://doi.org/10.1016/j.compstruc.2018.10.009.
  71. Lu, L., Guo, X. and Zhao, J. (2017a), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
  72. Lu, L., Guo, X. and Zhao, J. (2017b), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms", Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024.
  73. Mahesh, V., Kattimani, S., Harursampath, D. and Trung, N.T. (2019), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.
  74. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  75. Marzbanrad, J., Boreiry, M. and Shaghaghi, G.R. (2017), "Surface effects on vibration analysis of elastically restrained piezoelectric nanobeams subjected to magneto-thermo-electrical field embedded in elastic medium", Appl. Phys. A, 123(4), 246. https://doi.org/10.1007/s00339-017-0768-x.
  76. Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.32.5.595.
  77. Mirjavadi, S., Afshari, B.M., Barati, M.R. and Hamouda, A.M.S. (2019), "Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection", Microsyst. Technol., 25, 3137-3150. https://doi.org/10.1007/s00542-018-4277-4.
  78. Mohammadimehr, M. and Alimirzaei, S. (2016), "Nonlinear static and vibration analysis of Euler-Bernoulli composite beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM", Struct. Eng. Mech., 59(3), 431-454. https://doi.org/10.12989/sem.2016.59.3.431.
  79. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. B. Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030.
  80. Mohammadimehr, M. and Shahedi, S. (2017), "High-order buckling and free vibration analysis of two types sandwich beam including AL or PVC-foam flexible core and CNTs reinforced nanocomposite face sheets using GDQM", Compos. B. Eng., 108, 91-107. https://doi.org/10.1016/j.compositesb.2016.09.040.
  81. Mohammadimehr, M., Atifeh, S.J. and Navi, B.R. (2018), "Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings", J. Vib. Control, 24(15), 3471-3486. https://doi.org/10.1177/1077546317706887.
  82. Mohammadimehr, M., Mohammadimehr, M.A. and Dashti, P. (2016), "Size-dependent effect on biaxial and shear nonlinear buckling analysis of nonlocal isotropic and orthotropic micro-plate based on surface stress and modified couple stress theories using differential quadrature method", Appl. Math. Mech., 37(4), 529-554. https://doi.org/10.1007/s10483-016-2045-9.
  83. Mohammadimehr, M., Navi, B.R. and Arani, A.R. (2017b), "Dynamic stability of modified strain gradient theory sinusoidal viscoelastic piezoelectric polymeric functionally graded single-walled carbon nanotubes reinforced nanocomposite plate considering surface stress and agglomeration effects under hydro-thermo-electro-magneto-mechanical loadings", Mech. Adv. Mater. Struct., 24(16), 1325-1342. https://doi.org/10.1080/15376494.2016.1227507.
  84. Mohammadimehr, M., Saidi, A.R., Arani, A.G, Arefmanesh, A. and Han, Q. (2010), "Torsional buckling of a DWCNT embedded on Winkler and Pasternak foundations using nonlocal theory", J. Mech. Sci. Technol., 24(6), 1289-1299. ttps://doi.org/10.1007/s12206-010-0331-6.
  85. Mohammadimehr, M., Shahedi, S. and Navi, B.R. (2017a), "Nonlinear vibration analysis of FG-CNTRC sandwich Timoshenko beam based on modified couple stress theory subjected to longitudinal magnetic field using generalized differential quadrature method", Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci. 231(20), 3866-3885. https://doi.org/10.1177/0954406216653622.
  86. Moradi-Dastjerdi, R. and Behdinan, K. (2019), "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.
  87. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485.
  88. Pourjabari, A., Hajilak, Z.E., Mohammadi, A.R., Habibi, M. and Safarpour, H. (2019), "Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures", Comput. Math. Appl., 77(10), 2608-2626. https://doi.org/10.1016/j.camwa.2018.12.041.
  89. Qin, L., Wang, J., Liu, D., Tang, L. and Song, G. (2019), "Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer", Smart Struct. Syst., 24(4), 435-446. https://doi.org/10.12989/sss.2019.24.4.435.
  90. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Compos. Mater., 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567.
  91. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003.
  92. Rajabi, J. and Mohammadimehr, M. (2019), "Bending analysis of a micro sandwich skew plate using extended Kantorovich method based on Eshelby-Mori-Tanaka approach", Comput. Concrete, 23(5), 361-376. https://doi.org/10.12989/cac.2019.23.5.361.
  93. Reddy, R.M.R., Karunasena, W. and Lokuge, W. (2018), "Free vibration of functionally graded-GPL reinforced composite plates with different boundary conditions", Aerosp. Sci. Technol., 78, 147-156. https://doi.org/10.1016/j.ast.2018.04.019.
  94. Rostami, R., Irani Rahaghi, M. and Mohammadimehr, M. (2019), "Vibration control of the rotating sandwich cylindrical shell considering functionally graded core and functionally graded magneto-electro-elastic layers by using differential quadrature method", J. Sandw. Struct. Mater., 1099636218824139. https://doi.org/10.1177/1099636218824139.
  95. Sadighi, M., Benvidi, M.H. and Eslami, M.R. (2011), "Improvement of thermo-mechanical properties of transversely flexible sandwich panels by functionally graded skins", J. Sandw. Struct. Mater., 13(5), 539-577. https://doi.org/10.1177/1099636211400130.
  96. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and softcore sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  97. Sahmani, S. and Mohammadi Aghdam, M. (2018a), "Small scale effects on the large amplitude nonlinear vibrations of multilayer functionally graded composite nanobeams reinforced with graphene-nanoplatelets", Int. J. Nanosci. Nanotechnol., 14(3), 207-227.
  98. Sahmani, S., Mohammadi Aghdam, M. and Rabczuk, T. (2018b), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
  99. Sahmani, S., Mohammadi Aghdam, M. and Rabczuk, T. (2018c), "Nonlocal strain gradient plate model for nonlinear large-amplitude vibrations of functionally graded porous micro/nano-plates reinforced with GPLs", Compos. Struct., 198, 51-62. https://doi.org/10.1016/j.compstruct.2018.05.031
  100. Sankar, B.V. and Tzeng, J.T. (2002), "Thermal stresses in functionally graded beams", AIAA J., 40(6), 1228-1232. https://doi.org/10.2514/2.1775.
  101. Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  102. Sheng, G.G. and Wang, X. (2013), "Nonlinear vibration control of functionally graded laminated cylindrical shells", Compos. B. Eng., 52, 1-10. https://doi.org/10.1016/j.compositesb.2013.03.008.
  103. Shokravi, M. (2018), "Dynamic buckling of smart sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327.
  104. Simsek, M. (2019), "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Struct., 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
  105. Singh, A.K., Negi, A. and Koley, S. (2019), "Influence of surface irregularity on dynamic response induced due to a moving load on functionally graded piezoelectric material substrate", Smart Struct. Syst., 23(1), 31-44. https://doi.org/10.12989/sss.2019.23.1.031.
  106. Sobhy, M. (2018), "Magneto-electro-thermal bending of FG-graphene reinforced polymer doubly-curved shallow shells with piezoelectromagnetic faces", Compos. Struct., 203, 844-860. https://doi.org/10.1016/j.compstruct.2018.07.056.
  107. Tahouneh, V. (2018), "Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets", Steel Compos. Struct., 28(5), 541-557. https://doi.org/10.12989/scs.2018.28.5.541.
  108. Thanh, C. V., Tran, L., Bui, T.Q., Nguyen, H.X. and Abdel-Wahab, M. (2019), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
  109. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  110. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Soft., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005.
  111. Wang, L., Haugen, N.O., Wu, Z., Shu, X., Jia, Y., Ma, J., Yu, S., Li, H. and Chai, Q. (2019a), "Ferroelectric BaTiO3@ZnO heterostructure nanofibers with enhanced pyroelectrically-driven-catalysis", Ceram. Int., 45(1), 90-95. https://doi.org/10.1016/j.ceramint.2018.09.137.
  112. Wang, Y.Q., Liu, Y.F. and Zu, J.W. (2019b), "Analytical treatment of nonlocal vibration of multilayer functionally graded piezoelectric nanoscale shells incorporating thermal and electrical effect", Eur. Phys. J. Plus, 134(2), 54. https://doi.org/54. 10.1140/epjp/i2019-12405-9.
  113. Xiaobai, L., Li, L., Hu, Y., Ding, Z. and Deng, W. (2017), "Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory", Compos. Struct., 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032.
  114. Xiong, Q.l. and Tian, X. (2017), "Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock", Steel Compos. Struct., 25(2), 187-196. https://doi.org/10.12989/scs.2017.25.2.187.
  115. Xu, X.J., Wang, X.C., Zheng, M.L. and Ma, Z. (2017), "Bending and buckling of nonlocal strain gradient elastic beams", Compos. Struct., 160, 366-377. https://doi.org/10.1016/j.compstruct.2016.10.038.
  116. Yang, B., Kitipornchai, S., Yang, Y.F. and Yang, J. (2017), "3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates", Appl. Math. Model., 49, 69-86. https://doi.org/10.1016/j.apm.2017.04.044.
  117. Yang, J., Chen, D. and Kitipornchai, S. (2018a), "Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method", Compos. Struct., 193, 281-294. https://doi.org/10.1016/j.compstruct.2018.03.090.
  118. Yang, Y., Yang, B. and Niu, M. (2018b), "Dynamic/static displacement sensor based on magnetoelectric composites", Appl. Phys. Lett., 113(3), 032903. https://doi.org/10.1063/1.5037378.
  119. Yu, T., Hu, H., Zhang, J. and Quoc Bui, T. (2019), "Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory", Thin Wall. Struct., 138, 1-14. https://doi.org/10.1016/j.tws.2018.12.006.
  120. Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019), "A novel size-dependent quasi-3D isogeometric beam model for two-directional FG microbeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.
  121. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  122. Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Compos. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040.