DOI QR코드

DOI QR Code

Improvement of the mechanical properties of titanium carbonitride-metal composites by modification of interfaces

계면 개선을 통한 타이타늄 탄/질화물 금속 복합재료의 기계적 물성 향상

  • Kwon, Hanjung (Division of Advanced Materials Engineering, Jeonbuk National University)
  • 권한중 (전북대학교 신소재공학부)
  • Received : 2020.05.18
  • Accepted : 2020.06.02
  • Published : 2020.06.30

Abstract

Fracture in the titanium carbonitride-metal composites occurs by crack propagation through the carbonitride grains or in the interfaces. Thus, intrinsic properties of the carbonitride need to be enhanced and the interfaces should be also modified to coherent structure to strengthen the composites. Especially, interfacial structure can be the main factor to determine the mechanical properties of titanium carbonitride-metal composites because the interfaces between carbonitride grains and metallic phase are weak parts due to heterogeneous nature of carbonitride and metallic phase. In this paper, methodologies for improving the interfacial structure of titanium carbonitride-metal composites are suggested. Total area of the interfaces can be reduced using solid solution type carbonitrides as raw materials instead of a mixture of various carbonitrides in the composites. Also, synthesis of titanium carbonitride-metal composite powders and the low-temperature sintering of the composite powders for short time can be the way for formation of coherent interfaces. The sintering of the composite powders for short time at low temperature can reduce the potential of formation of interfaces by dissolution and precipitation of carbonitride in the liquid metal. As a result of formation of coherent boundaries due to low-temperature and short-time sintering, interfaces between titanium carbonitride grains and metallic phase have the favorable structure for the enhanced fracture toughness. It is believed that the low-temperature sintering of solid solution type composite powders for short time can be the way to improve the low toughness of the titanium carbonitride-metal composites.

Keywords

References

  1. P. Ettmayer, "HARDMETALS AND CERMETS," Annu. Rev. Mater. Sci., 19 145-64 (1989). https://doi.org/10.1146/annurev.ms.19.080189.001045
  2. X. H. Zhang, J. C. Han, S. Y. Du and J. W. Wood, "Microstructure and mechanical properties of TiC-Ni functionally graded materials by simultaneous combustion synthesis and compaction," J. Mater. Sci., 35 1925-30 (2000). https://doi.org/10.1023/a:1004714402128
  3. J. Jung and S. Kang, "Effect of ultra-fine powders on the microstructure of Ti(CN)-xWCNi cermets," Acta Mater., 52 1379-86 (2004). https://doi.org/10.1016/j.actamat.2003.11.021
  4. J. Jung and S. Kang, "Effect of Nano-Size Powders on the Microstructure of Ti(C,N)-xWC-Ni Cermets," J. Am. Ceram. Soc., 90 [7] 2178-83 (2007). https://doi.org/10.1111/j.1551-2916.2007.01654.x
  5. J. Jung and S. Kang, "Sintered (Ti,W)C carbides," Scripta Mater., 56 561-4 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.026
  6. R. Hulyal and G. S. Upadhyaya, "Sintering of WC-10Co Hard Metals Containing Vanadium Carbonitride and Rhenium-Part I: Vanadium Carbonitride Addition," Ref. Met. Hard Mater., 10 1-7 (1991). https://doi.org/10.1016/0263-4368(91)90005-9
  7. H. Nam and S. Kang, "Microstructure of (W,Ti) C-Co system containing platelet WC," Mater. Sci. Eng. A, 527 7163-7 (2010). https://doi.org/10.1016/j.msea.2010.06.056
  8. Y. Kang and S. Kang, "WC-reinforced (Ti,W) (CN)," J. Eur. Ceram. Soc., 30 793-8 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.013
  9. K. T. Hwang, C. S. Kim, K. H. Auh, D. S. Cheong and K. Niihara, "Influence of SiC particle size and drying method on mechanical properties and microstructure of Si3N4/SiC nanocomposite," Mater. Lett., 32 251-257 (1997). https://doi.org/10.1016/S0167-577X(97)00039-6
  10. B. Zou, C. Z. Huang, H. L. Liu and M. Chen, " Preparation and characterization of $Si_3N_4/TiN$ nanocomposites ceramic tool materials," J. Mater. Proc. Technol., 209 4595-4600 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.025
  11. D. Sciti, L. Silvestroni and M. Nygren, "Spark plasma sintering of Zr and Hf-borides with decreasing amounts of MoSi2 as sintering aid, " J. Eur. Ceram. Soc., 28 1287-1296 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.043
  12. D. S. Park and Y. D. Lee, "Effect of Carbides on the Microstructure and Properties of Ti(C,N)-Based Ceramics," J. Am. Ceram. Soc., 82 [11] 3150-54 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02216.x
  13. Cutting Tools; World markets, end-users, and competitors: 2012-2018 analysis & forecasts, Dedalus Consulting, Inc., 2014
  14. A. Moradkhani, H. Baharvandi and A. Naserifar, "Fracture Toughness of 3Y-TZP Dental Ceramics by Using Vickers Indentation," J. Korean Ceram. Soc., 56 [1] 37-48 (2019). https://doi.org/10.4191/kcers.2019.56.1.01
  15. H. J. Kim, S. M. Lee, J. Maeng and D. H. Kim, "Micro-Crack Healing on Soda-Lime Glass by Chemical Strengthening," J. Korean Ceram. Soc., 56 [5] 483-8 (2019). https://doi.org/10.4191/kcers.2019.56.5.08
  16. H. G. Jo, H. Kwon and I. J. Shon, "Simultaneous Synthesis and Rapid Consolidation of Nanostructured (Ti,Mo)C and Its Mechanical Properties," Kor. J. Mater. Res., 23 [11] 620-4 (2013). https://doi.org/10.3740/MRSK.2013.23.11.620
  17. S. A. Jung, H. Kwon, K. M. Roh, C. Y. Suh and W. Kim, "Ti-Based Solid Solution Carbonitride Prepared From Ti-Alloy Scraps via a Hydrogenation-Dehydrogenation Process and High-Energy Milling," Met. Mater. Int., 21 [5] 923-8 (2015). https://doi.org/10.1007/s12540-015-5050-1
  18. J. M. Oh, K. M. Roh, H. Kwon, B. K. Lee, C. Y. Suh and J. W. Lim, "Preparation of Ti Ternary Alloys by Addition of Si to Ti-Mo Alloy Scraps for Carbonitride Application," Mater. Tras., 56 [1] 167-70 (2015). https://doi.org/10.2320/matertrans.M2014285
  19. H. Kwon, S. A. Jung and W. Kim, "(Ti,Cr) C Synthesized In Situ by Spark Plasma Sintering," Mater. Tras., 56 [2] 264-8 (2015). https://doi.org/10.2320/matertrans.M2014327
  20. H. Kwon, J. Kim, S. A. Jung, C. Y. Suh, D. S. Kil, K. M. Roh and W. Kim, "(Ti,W)C-Ni cermet prepared by high-energy ball milling and subsequent carbothermal reduction of $TiO_2-Ti-WO_3-C$ mixture," Ceram. Int., 40 7607-11 (2014). https://doi.org/10.1016/j.ceramint.2013.11.141
  21. I. J. Shon, H. G. Jo and H. Kwon, "Properties of nanostructured TiC and TiC-TiAl3 hard materials rapidly sintered by the pulsed current activated heating," Int. J. Ref. Met. Hard Mater., 48 187-93 (2015). https://doi.org/10.1016/j.ijrmhm.2014.09.011
  22. H. Kwon and S. A. Jung, "Solid Solution Cermet: (Ti,Nb)(CN)-Ni Cermet," J. Nanosci. Nanotechnol., 14 8823-7 (2014). https://doi.org/10.1166/jnn.2014.9951
  23. H. Kwon, J. Kim, S. A. Jung, C. Y. Suh, D. S. Kil, K. M. Roh and W. Kim, "Mechanical properties of (Ti,V)C-Ni composite prepared using ultrafine solid-solution (Ti,V)C phase," Ceram. Int., 40 12579-83 (2014). https://doi.org/10.1016/j.ceramint.2014.04.064
  24. H. Kwon, C. Y. Suh and W. Kim, "Preparation of a highly toughened (Ti,W)C-20Ni cermet through in situ formation of solid solution and WC whiskers," Ceram. Int., 41 4223-6 (2015). https://doi.org/10.1016/j.ceramint.2014.11.031
  25. S. Y. Ahn and S. Kang, "Formation of Core/Rim Structures in Ti(C,N)-WC-Ni Cermets via a Dissolution and Precipitation Process," J. Am. Ceram. Soc., 83 [6] 1489-94 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01415.x
  26. H. Kwon, W. Kim and J. Kim, "Stability domains of (Ti,W)C and (Ti,W)(CN) during carbothermal reduction of TiO2/WO3 mixture at 1500 K," J. Eur. Ceram. Soc., 37 1355-71 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.11.008
  27. H. Kwon, A. Moon and J. Kim, "Prediction of solid solution characteristics of MC (M = Zr, Nb, and Ta) in TiC lattice using phase stability diagrams," J. Am. Ceram. Soc., 102 [7] 4285-95 (2019). https://doi.org/10.1111/jace.16251
  28. H. Kwon, A. Moon and J. Kim, "Phase Stability Diagrams of Ti-M-O-C (M = Zr, Hf, Nb, and Ta) Systems at 1800 K," Met. Mater. Int., 25 396-407 (2019). https://doi.org/10.1007/s12540-018-0185-5
  29. X. Song, Y. Gao, X. Liu, C. Wei, H. Wang and W. Xu, "Effect of interfacial characteristics on toughness of nanocrystalline cemented carbides," Acta Mater., 61 2154-62 (2013). https://doi.org/10.1016/j.actamat.2012.12.036
  30. H. Xie, X. Song, F. Yin and Y. Zhang, " Effect of WC/Co coherency phase boundaries on Fracture toughness of the nanocrystalline cemented carbides," Sci. Rep., 6 31047-54 (2016). https://doi.org/10.1038/srep31047
  31. H. Kwon, J. Kim, S. A. Jung, C. Y. Suh, D. S. Kil, K. M. Roh, W. Kim and J. W. Lim, " Premixed TiC-Ni composite powder prepared by mechanical milling of Ti-Ni alloy/graphite mixture and subsequent heat treatment," Powder Technol., 253 681-5 (2014). https://doi.org/10.1016/j.powtec.2013.12.037
  32. H. Kwon, S. A. Jung, C. Y. Suh, K. M. Roh, W. Kim and J. Kim, "Highly toughened dense TiC-Ni composite by in situ decomposition of (Ti,Ni)C solid solution," Ceram. Int., 41 4656-61(2015). https://doi.org/10.1016/j.ceramint.2014.12.011
  33. S. A. Jung, H. Kwon, C. Y. Suh, J. M. Oh and W. Kim, "Preparation of a fine-structured TiC-Co composite by high-energy milling and subsequent heat treatment of a Ti-Co alloy," Ceram. Int., 41 14326-31(2015). https://doi.org/10.1016/j.ceramint.2015.07.064
  34. H. Kwon and C. Y. Suh, "Effects of Ni content and sintering temperature on the microstructure and mechanical properties of TiC-Ni composites fabricated by selective carburization of Ti-Ni alloys," J. Alloys Comd., 834 155000 (2020). https://doi.org/10.1016/j.jallcom.2020.155000