DOI QR코드

DOI QR Code

그래핀의 습윤성 및 제어기술

Wettability of graphene and its control

  • 손장엽 (한국과학기술연구원 기능성복합소재연구센터)
  • Son, Jangyup (Functional Composite Materials Research Center, Korea Institute of Science and Technology)
  • 투고 : 2020.05.22
  • 심사 : 2020.06.04
  • 발행 : 2020.06.30

초록

The wettability is one of the most fundamental properties of a material surface. Especially, graphene, two-dimensional (2D) surface material in which all the carbon atoms are exposed to the environment, is the best choice of template to study about the surface wettability. However, most studies have focused on the mechanical and electrical properties of graphene, not the surface wettability. This review article covers the wettability of graphene and provides recent research regarding the engineering of the surface wettability. This paper would be helpful for researchers working in this field and provides perspective for future carbon-liquid interacting applications.

키워드

참고문헌

  1. J. Feng and Z. Guo, "Wettability of Graphene: from Influencing Factors and Reversible Conversion to Potential Applications," Nanoscale Horiz., 4 ,339-64 (2019). https://doi.org/10.1039/c8nh00348c
  2. L. Zhong, H. Zhu, Y. Wu and Z. Guo, "Understanding How Surface Chemistry and Topography Enhance Fog Harvesting based on the Superwetting Surface with Patterned Hemispherical Bulges," J. Colloid Interface Sci., 525 234-42 (2018). https://doi.org/10.1016/j.jcis.2018.04.061
  3. J. Li and Z. Guo, "Spontaneous Directional Transportations of Water Droplets on Surfaces Driven by Gradient Structures," Nanoscale, 10 13814-31 (2018). https://doi.org/10.1039/C8NR04354J
  4. X. Jing and Z. Guo, "Biomimetic Super Durable and Stable Surfaces with Superhydrophobicity, " J. Mater. Chem. A, 6 16731-68 (2018). https://doi.org/10.1039/C8TA04994G
  5. C. Huang and Z. Guo, "The Wettability of Gas Bubbles: from Macro Behavior to Nano Structures to Applications," Nanoscale, 10 19659-72 (2018). https://doi.org/10.1039/c8nr07315e
  6. B. B. Rich and B. Pokroy, "A Study on the Wetting Properties of Broccoli Leaf Surfaces and Their Time Dependent Self-Healing after Mechanical Damage," Soft Matter, 14 7782-92 (2018). https://doi.org/10.1039/c8sm01115j
  7. S. S. Latthe, P. Sudhagar, A. Devadoss, A. M. Kumar, S. Liu, C. Terashima, K. Nakata and A. Fujishima, "A Mechanically Bendable Superhydrophobic Steel Surface with Self-Cleaning and Corrosion-Resistant Properties," J. Mater. Chem. A, 3 14263-71 (2015). https://doi.org/10.1039/C5TA02604K
  8. T. Niu, J. Zhang and W. Chen, "Surface Engineering of Two-Dimensional Materials," ChemNanoMat, 5 6-23 (2019). https://doi.org/10.1002/cnma.201800181
  9. A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Catelletto and S. Mikhalovsky, "Outlook for Graphene-Based Desalination Membranes," npj Clean Water, 5 (2018).
  10. M. F. El-Kady, Y. Shao and R. B. Kaner, "Graphene for Batteries, Supercapacitors and Beyond," Nat. Rev. Mater., 1 16033 (2016). https://doi.org/10.1038/natrevmats.2016.33
  11. R. Raj, S. C. Maroo and E. N. Wang, "Wettability of Graphene," Nano Lett., 13 1509-15 (2013). https://doi.org/10.1021/nl304647t
  12. D. Parobek and H. Liu, "Wettability of Graphene," 2D Mater., 2 032001 (2015). https://doi.org/10.1088/2053-1583/2/3/032001
  13. L. A. Belyaeva and G. F. Schneider, "Wettability of Graphene," Surf. Sci. Rep., 75 100482 (2020). https://doi.org/10.1016/j.surfrep.2020.100482
  14. P. Snapp, J. M. Kim, C. Cho, J. Leem, M. F. Haque and S. W. Nam, "Interaction of 2D Materials with Liquids: Wettability, Electrochemical Properties, Friction, and Emerging Directions," NPG Asia Materials, 12 22 (2020). https://doi.org/10.1038/s41427-020-0203-1
  15. J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P. M. Ajayan and Nikhil Koratkar, "Wetting Transparency of Graphene, " Nat. Mater., 11 217-22 (2012). https://doi.org/10.1038/nmat3228
  16. Z. Li, Y. Wang, A. Kozbial, G. Shenoy, F. Zhou, R. McGinley, P. Ireland, B. Morganstein, A. Kunkel, S. P. Surwade, L. Li and H. Liu, "Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite," Nat. Mater., 12 925-31 (2013). https://doi.org/10.1038/nmat3709
  17. F. Taherian, V. Marcon, N. F. A. van der Vegt and F. Leroy, "What Is the Contact Angle of Water on Graphene?," Langmuir, 29 1457-65 (2013). https://doi.org/10.1021/la304645w
  18. G. Scocchi, D. Sergi, C. D'Angelo and A. Ortona, "Wetting and Contact-Line Effects for Spherical and Cylindrical Droplets on Graphene Layers: A Comparative Molecular-Dynamics Investigation," Phys. Rev. E, 84 061602 (2011).
  19. J. E. Andrew, S. Sinha, P. W. Chung and S. Das, "Wetting Dynamics of a Water Nanodrop on Graphene," Phys. Chem. Chem. Phys., 18 23482-93 (2016). https://doi.org/10.1039/c6cp01936f
  20. G. Yiapanis, A. J. Makarucha, J. S. Baldauf and M. T. Downton, "Simulations of Graphitic Nanoparticles at Air-Water Interfaces," Nanoscale, 8 19620-28 (2016). https://doi.org/10.1039/C6NR06475B
  21. D. G. Papageorgious, I. A. Kinloch and R. J. Young, "Mechanical Properties of Graphene and Graphene-Based Nanocomposites," Prog. Mater. Sci., 90 75-127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
  22. W. Xiong, J. Z. Liu, Z.-L. Zhang and Q.-S. Zheng, "Control of Surface Wettability via Strain Engineering," Acta Mechanica Sinica , 29 543-49 (2013). https://doi.org/10.1007/s10409-013-0063-9
  23. S. Zhang, J. Huang, Z. Chen and Y. Lai, "Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications," Small, 13 1602992 (2017). https://doi.org/10.1002/smll.201602992
  24. L. Makkonen, "Young's equation revisited," J. Phys.: Condens. Matter, 28 135001 (2016). https://doi.org/10.1088/0953-8984/28/13/135001
  25. R. N. Wenzel, "Resistance of Solid Surfaces to Wetting by Water," Ind. Eng. Chem., 28 988-94 (1936). https://doi.org/10.1021/ie50320a024
  26. A. B. D. Cassie and S. Baxter, "Wettability of Porous Surfaces," Trans. Faraday Soc., 40 546-51 (1944). https://doi.org/10.1039/TF9444000546
  27. J. Dong, Z. Yoo, T. Yang, L. Jiang and C. Shen, "Control of Superhydrophilic and Superhydrophobic Graphene Interface," Sci. Rep., 3 1733 (2013). https://doi.org/10.1038/srep01733
  28. E. Singh, Z. Chen, F. Houshmand, W. Ren, Y. Peles, H.-M. Cheng and N. Koratkar, "Superhydrophobic Graphene Foams," Small, 9 75-80 (2013). https://doi.org/10.1002/smll.201201176
  29. J. Zang, S. Ryu, N. Pugno, Q. Wang, Q. Tu, M. J. Buehler and X. Zhao, "Multifunctionality and Control of the Crumpling and Unfolding of Large-Area Graphene," Nat. Mater., 12 321-25 (2013). https://doi.org/10.1038/nmat3542
  30. Y. J. Shin, Y. Wang, H. Huang, G. Kalon, A. T. S. Wee, Z. Shen, C. S. Bhatia and H. Yang, "Surface-Energy Engineering of Graphene," Langmuir, 26 3798-802 (2010). https://doi.org/10.1021/la100231u
  31. C. J. Russo and L. A. Passmore, "Controlling Protein Adsorption on Graphene for Cryo-EM using Low-Energy Hydrogen Plasmas," Nat. Methods, 11 649-652 (2014). https://doi.org/10.1038/nmeth.2931
  32. J. Son, J.-Y Lee, N. Han, J. Cha, J. Choi, J. Kwon, S. W. Nam, K.-H. Yoo, G.-H. Lee and J. Hong, "Tunable Wettability of Graphene through Nondestructive Hydrogenation and Wettability-Based Patterning for Bioapplications," Nano Lett., (2020).
  33. C. Wang, B. Zhou, Y. Tu, M. Duan, P. Xiu, J. Li and H. Fang, "Critical Dipole Length for the Wetting Transition Due to Collective Waterdipoles Interactions," Sci. Rep., 2 358 (2012). https://doi.org/10.1038/srep00358
  34. Y. Li and Z. Chen, "Patterned Partially Hydrogenated Graphene ($C_4H$) and Its One-Dimensional Analogues: A Computational Study," J. Phys. Chem. C, 116 4526-4534 (2012). https://doi.org/10.1021/jp212499h
  35. H. Sahin, M. Topsakal and S. Ciraci, "Structures of Fluorinated Graphene and Their Signatures," Phys. Rev. B, 83 115432 (2011). https://doi.org/10.1103/physrevb.83.115432
  36. W. Feng, P. Long, Y. Feng and Y. Li, "Two-Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications," Adv. Sci., 3 1500413 (2016). https://doi.org/10.1002/advs.201500413
  37. V. Mazanek, O. Jankovsky, J. Luxa, D. Sedmidubsky, Z. Janousek, F. Sembera, M. Mikulics and Z. Sofer, "Tuning of Fuorine Content in Graphene: Towards Large-Scale Production of Stoichiometric Fuorographene," Nanoscale, 7 13646 (2015). https://doi.org/10.1039/C5NR03243A
  38. T. Lim and S. Ju, "Control of Graphene Surface Wettability by Using $CF_4$ Plasma," Surf. Coat. Tech., 328 89-93 (2017). https://doi.org/10.1016/j.surfcoat.2017.08.044

피인용 문헌

  1. 산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성 vol.31, pp.7, 2020, https://doi.org/10.3740/mrsk.2021.31.7.420