DOI QR코드

DOI QR Code

기상 반응용 스마트 용출 촉매 연구 동향

A review of smart exsolution catalysts for the application of gas phase reactions

  • 황루이 (포항공과대학교 화학공학과) ;
  • 김형준 (포항공과대학교 화학공학과) ;
  • 한정우 (포항공과대학교 화학공학과)
  • Huang, Rui (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Hyung Jun (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Han, Jeong Woo (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2020.05.18
  • 심사 : 2020.06.02
  • 발행 : 2020.06.30

초록

Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.

키워드

참고문헌

  1. Lindenthal, L.; Rameshan, R.; Summerer, H.; Ruh, T.; Popovic, J.; Nenning, A.; Loffler, S.; Opitz, A. K.; Blaha, P.; Rameshan, C. Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts, 10 [3] 1-14 (2020). https://doi.org/10.3390/catal10030268
  2. Tanaka, H.; Misono, M. "Advances in Designing Perovskite Catalysts." Curr Opin Solid St M 5 [5] 381-387 (2001). https://doi.org/10.1016/S1359-0286(01)00035-3
  3. Nishihata, Y.; J.Mizuki; T.Akao; H.Tanaka; M.Uenishi; M.Kimura; T.Okamoto; N.Hamada "Self-Regeneration of A Pd-Perovskite Catalyst for Automotive Emissions Control." Nature, 418 [6894] 164-167 (2002). https://doi.org/10.1038/nature00893
  4. Kim, J. H.; Park, Y. M.; Kim, T.; Kim, H. "Characterizations of Composite Cathodes With $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ and $Ce_{0.9}Gd_{0.1}O_{1.95}$ for Solid Oxide Fuel Cells." Korean J. Chem. Eng., 29 [3] 349-355 (2011). https://doi.org/10.1007/s11814-011-0131-4
  5. Kwon, O.; Kim, K.; Joo, S.; Jeong, H. Y.; Shin, J.; Han, J. W.; Sengodan, S.; Kim, G. "Self-assembled Alloy Nanoparticles in A Layered Double Perovskite as A Fuel Oxidation Catalyst for Solid Oxide Fuel Cells." J. Mater. Chem. A, 6 [33] 15947-15953 (2018). https://doi.org/10.1039/c8ta05105d
  6. Jo, Y. R.; Koo, B.; Seo, M. J.; Kim, J. K.; Lee, S.; Kim, K.; Han, J. W.; Jung, W.; Kim, B. J. "Growth Kinetics of Individual Co Particles Ex-Solved on $SrTi_{0.75}Co_{0.25}O_3$-delta Polycrystalline Perovskite Thin Films." J. Am. Chem. Soc., 141 [16] 6690-6697 (2019). https://doi.org/10.1021/jacs.9b01882
  7. Joo, S.; Kwon, O.; Kim, K.; Kim, S.; Kim, H.; Shin, J.; Jeong, H. Y.; Sengodan, S.; Han, J. W.; Kim, G. "Cation-Swapped Homogeneous Nanoparticles in Perovskite Oxides for High Power Density." Nat. Commun., 10 [1] 697 (2019). https://doi.org/10.1038/s41467-019-08624-0
  8. Choi, M.; Ibrahim, I. A. M.; Kim, K.; Koo, J. Y.; Kim, S. J.; Son, J. W.; Han, J. W.; Lee, W. "Engineering of Charged Defects at Perovskite Oxide Surfaces for Exceptionally Stable Solid Oxide Fuel Cell Electrodes." ACS Appl. Mater. Interfaces, 12 [19] 21494-21504 (2020). https://doi.org/10.1021/acsami.9b21919
  9. Jacobs, R.; Mayeshiba, T.; Booske, J.; Morgan, D. "Material Discovery and Design Principles For Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells." Adv. Energy Mater., 8 [11] (2018).
  10. Kwon, O.; Sengodan, S.; Kim, K.; Kim, G.; Jeong, H. Y.; Shin, J.; Ju, Y. W.; Han, J. W.; Kim, G. "Exsolution Trends and Co-Segregation Aspects of Self-Grown Catalyst Nanoparticles in Perovskites." Nat. Commun., 8 15967 (2017). https://doi.org/10.1038/ncomms15967
  11. Koo, B.; Kim, K.; Kim, J. K.; Kwon, H.; Han, J. W.; Jung, W. "Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists." Joule, 2 [8] 1476-1499 (2018). https://doi.org/10.1016/j.joule.2018.07.016
  12. Kim, K.; Lim, C.; Han, J. W. "Computational Approaches to The Exsolution Phenomena in Perovskite Oxides with A View To Design Highly Durable and Active Anodes for Solid Oxide Fuel Cells." Korean J. Chem. Eng., in press (2020).
  13. Neagu, D.; Oh, T. S.; Miller, D. N.; Menard, H.; Bukhari, S. M.; Gamble, S. R.; Gorte, R. J.; Vohs, J. M.; Irvine, J. T. S. "Nano-Socketed Nickel Particles with Enhanced Coking Resistance Grown In Situ by Redox Exsolution." Nat. Commun., 6 8120 (2015). https://doi.org/10.1038/ncomms9120
  14. Li, S.; Qin, Q.; Xie, K.; Wang, Y.; Wu, Y. "High-Performance Fuel Electrodes Based on $NbTi_{0.5}M_{0.5}O_4$ (M = Ni, Cu) with Reversible Exsolution of The Nano-Catalyst for Steam Electrolysis." J. Mater. Chem. A, 1 [31] (2013).
  15. Pilger, F.; Testino, A.; Carino, A.; Proff, C.; Kambolis, A.; Cervellino, A.; Ludwig, C. "Size Control of Pt Clusters on $CeO_2$ Nanoparticles via An Incorporation-Segregation Mechanism and Study of Segregation Kinetics." ACS Catal., 6 [6] 3688-3699 (2016). https://doi.org/10.1021/acscatal.6b00934
  16. Kurnatowska, M.; Kepinski, L.; Mista, W. "Structure Evolution of Nanocrystalline $Ce_{1-x}Pd_xO_{2-y}$ Mixed Oxide In Oxidizing And Reducing Atmosphere: Reduction-Induced Activity in Low-Temperature CO Oxidation." Appl. Catal., B : Environmental 117-118 135-147 (2012). https://doi.org/10.1016/j.apcatb.2011.12.034
  17. Kurnatowska, M.; Schuster, M. E.; Mista, W.; Kepinski, L. "Self-Regenerative Property of Nanocrystalline $Ce_{0.89}M_{0.11}O_{2-y}$(M=Pd, Rh) Mixed Oxides." ChemCatChem, 6 [11] 3125-3131 (2014). https://doi.org/10.1002/cctc.201402480
  18. Gan, L.; Ye, L.; Ruan, C.; Chen, S.; Xie, K. "Redox-Reversible Iron Orthovanadate Cathode for Solid Oxide Steam Electrolyzer." Adv. Sci., (Weinh) 3 [2] 1500186 (2016). https://doi.org/10.1002/advs.201500186
  19. Papargyriou, D.; Miller, D. N.; Sirr Irvine, J. T. "Exsolution of Fe-Ni Alloy Nanoparticles from $(La,Sr)(Cr,Fe,Ni)O_3$ Perovskites as Potential Oxygen Transport Membrane Catalysts for Methane Reforming." J. Mater. Chem. A, 7 [26] 15812-15822 (2019). https://doi.org/10.1039/C9TA03711J
  20. Lai, K.-Y.; Manthiram, A. "Evolution of Exsolved Nanoparticles on A Perovskite Oxide Surface during A Redox Process." Chem. Mater., 30 [8] 2838-2847 (2018). https://doi.org/10.1021/acs.chemmater.8b01029
  21. Katz, M. B.; Graham, G. W.; Duan, Y.; Liu, H.; Adamo, C.; Schlom, D. G.; Pan, X. "Self-Regeneration of Pd-$LaFeO_3$ Catalysts: New Insight from Atomic-Resolution Electron Microscopy." J. Am. Chem. Soc., 133 [45] 18090-3 (2011). https://doi.org/10.1021/ja2082284
  22. Steiger, P.; Nachtegaal, M.; Krocher, O.; Ferri, D. Reversible Segregation of Ni in $LaFe_{0.8}Ni_{0.2}O_{3{\pm{\delta}$ during Coke Removal. ChemCatChem, 10 [19] 4456-4464 (2018). https://doi.org/10.1002/cctc.201800603
  23. Steiger, P.; Delmelle, R.; Foppiano, D.; Holzer, L.; Heel, A.; Nachtegaal, M.; Krocher, O.; Ferri, D. "Structural Reversibility and Nickel Particle Stability in Lanthanum Iron Nickel Perovskite-Type Catalysts." ChemSusChem, 10 [11] 2505-2517 (2017). https://doi.org/10.1002/cssc.201700358
  24. Sun, Y. F.; Li, J. H.; Cui, L.; Hua, B.; Cui, S. H.; Li, J.; Luo, J. L. "Correction: A-site-deficiency Facilitated In Situ Growth of Bimetallic Ni-Fe Nano-Alloys: A Novel Coking-Tolerant Fuel Cell Anode Catalyst." Nanoscale, 9 [2] 947 (2017). https://doi.org/10.1039/C6NR90263D
  25. Zhu, X.; Li, K.; Neal, L.; Li, F. "Perovskites as Geo-Inspired Oxygen Storage Materials for Chemical Looping and Three-Way Catalysis: A Perspective." ACS Catal., 8 [9] 8213-8236 (2018). https://doi.org/10.1021/acscatal.8b01973
  26. Uenishi, M.; Tanaka, H.; Taniguchi, M.; Tan, I.; Nishihata, Y.; Mizuki, J. i.; Kobayashi, T. "Time Evolution of Palladium Structure Change with Redox Fluctuations in a $LaFePdO_3$ Perovskite Automotive Catalyst by High-Speed Analysis with In Situ DXAFS." Catal. Commun., 9 [2] 311-314 (2008). https://doi.org/10.1016/j.catcom.2007.05.041
  27. Keav, S.; Matam, S.; Ferri, D.; Weidenkaff, A. "Structured Perovskite-Based Catalysts and Their Application as Three-Way Catalytic Converters-A Review." Catalysts, 4 [3] 226-255 (2014). https://doi.org/10.3390/catal4030226
  28. Uenishi, M.; Taniguchi, M.; Tanaka, H.; Kimura, M.; Nishihata, Y.; Mizuki, J.; Kobayashi, T. "Redox Behavior of Palladium at Start-Up in the Perovskite-Type $LaFePdO_x$ Automotive Catalysts Showing A Self-Regenerative Function." Appl. Catal., B : Environmental 57 [4] 267-273 (2005). https://doi.org/10.1016/j.apcatb.2004.11.011
  29. Tanaka, H.; Taniguchi, M.; Uenishi, M.; Kajita, N.; Tan, I.; Nishihata, Y.; Mizuki, J.; Narita, K.; Kimura, M.; Kaneko, K. "Self-Regenerating Rh- and Pt-Based Perovskite Catalysts for Automotive-Emissions Control." Angew. Chem., Int. Ed. Engl., 45 [36] 5998-6002 (2006). https://doi.org/10.1002/anie.200503938
  30. Taniguchi, M.; Tanaka, H.; Uenishi, M.; Tan, I.; Nishihata, Y.; Mizuki, J. i.; Suzuki, H.; Narita, K.; Hirai, A.; Kimura, M. "The Self-Regenerative Pd-, Rh-, and Pt-Perovskite Catalysts." Top. Catal., 42-43 [1-4] 367-371 (2007). https://doi.org/10.1007/s11244-007-0207-x
  31. Steiger, P.; Krocher, O.; Ferri, D. Increased Nickel Exsolution from $LaFe_{0.8}Ni_{0.2}O_3$ Perovskite-Derived $CO_2$ Methanation Catalysts Through Strontium Doping." Appl. Catal., A : General 590 (2020).
  32. Tada, S.; Ono, T.; Kikuchi, R. "Regeneration Behavior of Reforming Catalysts Based on Perovskite Oxides $LaM_{0.95}Rh_{0.05}O_3$ (M: Cr, Co, Fe) by Redox Treatment." Fuel, 269 (2020).
  33. Papaioannou, E. I.; Neagu, D.; Ramli, W. K. W.; Irvine, J. T. S.; Metcalfe, I. S. "Sulfur-Tolerant, Exsolved Fe-Ni Alloy Nanoparticles For CO Oxidation." Top. Catal., 62 [17-20] 1149-1156 (2018). https://doi.org/10.1007/s11244-018-1053-8
  34. Malamis, S. A.; Harrington, R. J.; Katz, M. B.; Koerschner, D. S.; Zhang, S.; Cheng, Y.; Xu, L.; Jen, H.-W.; McCabe, R. W.; Graham, G. W.; Pan, X. "Comparison of Precious Metal Doped and Impregnated Perovskite Oxides For TWC Application." Catal. Today, 258 535-542 (2015). https://doi.org/10.1016/j.cattod.2014.11.028
  35. Tang, C.; Kousi, K.; Neagu, D.; Portoles, J.; Papaioannou, E. I.; Metcalfe, I. S. "Towards Efficient Use of Noble Metals via Exsolution Exemplified for CO Oxidation." Nanoscale, 11 [36] 16935-16944 (2019). https://doi.org/10.1039/c9nr05617c
  36. Neagu, D.; Tsekouras, G.; Miller, D. N.; Menard, H.; Irvine, J. T. "In Situ Growth of Nanoparticles through Control of Non-Stoichiometry." Nat. Chem., 5 [11] 916-23 (2013). https://doi.org/10.1038/nchem.1773
  37. Neagu, D.; Papaioannou, E. I.; Ramli, W. K. W.; Miller, D. N.; Murdoch, B. J.; Menard, H.; Umar, A.; Barlow, A. J.; Cumpson, P. J.; Irvine, J. T. S.; Metcalfe, I. S. "Demonstration of Chemistry at A Point through Restructuring and Catalytic Activation at Anchored Nanoparticles." Nat. Commun., 8 [1] 1855 (2017). https://doi.org/10.1038/s41467-017-01880-y
  38. Dimitrakopoulos, G.; Ghoniem, A. F.; Yildiz, B. "In Situ Catalyst Exsolution on Perovskite Oxides for The Production of CO and Synthesis Gas In Ceramic Membrane Reactors." Sustainable Energy Fuels, 3 [9] 2347-2355 (2019). https://doi.org/10.1039/C9SE00249A
  39. Park, Y. S.; Kang, M.; Byeon, P.; Chung, S.-Y.; Nakayama, T.; Ko, T.; Hwang, H. "Fabrication of A Regenerable Ni Supported NiO-MgO Catalyst for Methane Steam Reforming by Exsolution." J. Power Sources, 397 318-324 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.025
  40. Padi, S. P.; Shelly, L.; Komarala, E. P.; Schweke, D.; Hayun, S.; Rosen, B. A. "Coke-Free Methane Dry Reforming Over Nano-Sized NiO-$CeO_2$ Solid Solution after Exsolution." Catal. Commun., 138 (2020).
  41. Roh, H. "Methane-Reforming Reactions over $Ni/Ce-ZrO_2/{\theta}Al_2O_3$ Catalysts." Appl. Catal., A: General 251 [2] 275-283 (2003). https://doi.org/10.1016/S0926-860X(03)00359-4
  42. Reddy, B. M.; Bharali, P.; Saikia, P. "Structural Characterization and Catalytic Activity of Nanosized $Ce_xM_{1-x}O_2$ (M = Zr and Hf) Mixed Oxides." J. Phys. Chem. C, 112 11729-11737 (2008). https://doi.org/10.1021/jp802674m
  43. Kim, H. J.; Jang, M. G.; Shin, D.; Han, J. W. "Design of Ceria Catalysts for Low-Temperature CO Oxidation." ChemCatChem, 12 [1] 11-26 (2019). https://doi.org/10.1002/cctc.201901787
  44. Campisciano, V.; Gruttadauria, M.; Giacalone, F. "Modified Nanocarbons for Catalysis." ChemCatChem, 11 [1] 90-133 (2018). https://doi.org/10.1002/cctc.201801414
  45. Singhania, A. ; Gupta, S. M. "Nickel Nanocatalyst Ex-Solution from Ceria-Nickel Oxide Solid Solution for Low Temperature CO Oxidation." J. Nanosci. Nanotechnol., 18 [7] 4614-4620 (2018). https://doi.org/10.1166/jnn.2018.15342
  46. Tanaka, H.; Fujikawa, H.; Takahashi, l. "Perovskite-Pd Three-Way Catalysts for Automotive Applications." SAE Tech. Pap., 930251 63-76 (1993).
  47. H.Tanaka; H.Fujikawa; I.Takahashi "Excellent Oxygen Storage Capacity of Perovskite-Pd Three-Way-Catalysts." SAE Tech. Pap., 950256 289-301 (1995).
  48. Tanaka, H.; Uenishi, M.; tan, I. "An Intelligent Catalyst." SAE Tech. Pap., 01 [1301] (2001).