DOI QR코드

DOI QR Code

A Brief Review of Enhancing Incipient Piezostrains: Approach by Ceramic/Ceramic Composites

비스무스계 무연 압전세라믹스의 저전계 변형특성 향상을 위한 세라믹/세라믹 복합소재 기술

  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Duong, Trang An (School of Materials Science and Engineering, University of Ulsan) ;
  • Ahn, Chang Won (Department of Physics & EHSRC, University of Ulsan) ;
  • Jo, Wook (Materials Science and Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 한형수 (울산대학교 첨단소재공학부) ;
  • 즈엉 짱 안 (울산대학교 첨단소재공학부) ;
  • 안창원 (울산대학교 물리학과 & EHSRC) ;
  • 조욱 (울산과학기술원 신소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2020.02.25
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

Abnormally large electromechanical strain properties have been reported in bismuth-based piezoelectric ceramics, which cast a promise for replacing the market-dominating PZT-based piezoelectric ceramics in actuator applications. In spite of these large strains in bismuth-based piezoelectric ceramics, there still remains a critical issue for its safe transfer to practical applications, representatively, a relatively high operating field required to obtain the large strain properties. To overcome the challenge, much attention has been paid to so-called 0-3(or 3-0) type ceramic/ceramic composite approach to better tailoring the strain properties of bismuth-based piezoelectric ceramics. The approach turns out to be highly effective, leading to a drastic decrease in the operating electric field for these materials. Besides, both extensive and intensive search for the related mechanism revealed that the reduction in the operating electric field is largely due to the contribution from polarization coupling or strain coupling model between two different ceramics. This article reviews the status of the art in the development of novel ceramic/ceramic composites to make large incipient piezostrains in bismuth-based lead-free piezoelectric ceramics practical.

Keywords

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, "Piezoelectric Ceramics," Academic Press, 1971.
  2. K. Uchino, "Piezoelectric Actuators and Ultrasonic Motors," Kluwer Academic Publishers, Boston, 1997.
  3. A. J. Bell and O. Deubzer. "Lead-Free Piezoelectrics-The Environmental and Regulatory Issues," MRS Bulletin, 43, 581-7 (2018) https://doi.org/10.1557/mrs.2018.154
  4. J. Rodel, J. F. Li, "Lead-Free Piezoceramics: Status and Perspectives," MRS Bulletin, 43, 576-80 (2018) https://doi.org/10.1557/mrs.2018.181
  5. Quoted from the invited talk by professor Takenaka at the ISAF, Santa Fe, USA (2008).
  6. W. Jo, "Lead-Free Incipient Piezoceramics for Actuator Applications," Physics and High Technology, 22, 8-13 (2013). https://doi.org/10.3938/PhiT.22.002
  7. T. Takenaka, K. I. Maruyama and K. Sakata, "$(Bi_{1/2}Na_{1/2})TiO_3-BaTiO_3$ System for Lead-Free Piezoelectric Ceramics," Jpn. J. Appl.. Phys., 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236
  8. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, "Dielectric and Piezoelectric Properties of $(Bi_{0.5}Na_{0.5})TiO_3-(Bi_{0.5}K_{0.5})TiO_3$ Systems," Jpn. J. Appl. Phys., Part 1, 38, 5564 (1999). https://doi.org/10.1143/JJAP.38.5564
  9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432, 84 (2004). https://doi.org/10.1038/nature03028
  10. M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. -H. Kim, W. -J. Kim, D. Do, I. -K. Jeong," High-Performance Lead-Free Piezoceramics with High Curie Temperatures," Adv. Mater., 27, 6976-82 (2015). https://doi.org/10.1002/adma.201502424
  11. W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
  12. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rodel, "Giant Strain in Lead-Free Piezoceramics $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-K_{0.5}Na_{0.5}NbO_3$ System," Appl. Phys. Lett., 91, 112906 (2007). https://doi.org/10.1063/1.2783200
  13. J. Rodel, W. Jo, K. T. P. Seifert, E. M. Anton, T. Granzow, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92, 1153-1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  14. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics For Actuator Applications - Status and Perspective," J. Electroceram., 29, 71 (2012). https://doi.org/10.1007/s10832-012-9742-3
  15. H. S. Han, W. Jo, J. K. Kang, C. W. Ahn, I. W. Kim, K. K. Ahn, J. S. Lee, "Incipient Piezoelectrics and Electrostriction Behavior in Sn-doped $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-free Ceramics," J. Appl. Phys., 113, 154102 (2013). https://doi.org/10.1063/1.4801893
  16. M. Fazeli, J. P. Florez, R. A. Simao (April 2019). "Improvement in Adhesion of Cellulose Fibers to the Thermoplastic Starch Matrix by Plasma Treatment Modification," Composites Part B, 163, 207-216 (2019). https://doi.org/10.1016/j.compositesb.2018.11.048
  17. 김현이, 이동한, "세라믹 복합재료," 세라미스트, 9, 125-31 (1994).
  18. 박상환, 김영욱, 이준근, "세라믹 기지 복합재료 제조 기술," 세라미스트, 5, 145-55 (1990).
  19. T. R. Shrout, W. A. Schulze and J. V. Biggers, "Electromechanical Behavior of Antiferroelectric-Ferroelectric Multilayer PZT Based Composites," Ferroelectrics, 29, 129-34 (1980). https://doi.org/10.1080/00150198008008468
  20. D. E. Dausch, E. Furman, F. Wang and G. H. Haertling, "PLZT-based Multilayer Composite Thin Films, Part I: Experimental Investigation of Composite Film Structures," Ferroelectrics, 177, 221-36 (1996). https://doi.org/10.1080/00150199608223631
  21. D. E. Dausch, E. Furman, F. Wang, G. H. Haertling, "PLZT-based Multilayer Composite Thin Films, Part II: Modeling of the Dielectric and Hysteresis Properties," Ferroelectrics, 177, 237-53 (1996). https://doi.org/10.1080/00150199608223632
  22. O. Furukawa, M. Harata, M. Imai, Y. Yamashita and S. Mukaeda, "Low Firing and High Dielectric Constant X7R Ceramic Dielectric for Multilayer Capacitors based on Relaxor and Barium Titanate Composite," J. Mater. Sci., 26, 5838-42 (1991). https://doi.org/10.1007/BF01130122
  23. H. Komiya, Y. Naito, T. Takenaka, and K. Sakata, "Piezoelectric and Pyroelectric Composite Ceramics of the Multilayer Type by Tape Casting," Jpn. J. Appl. Phys. Part 1, 28, 114-6 (1989).
  24. A. Yoneda, T. Takenaka and K. Sakata, "Composite Piezoelectric Ceramics of $(LiBi)_{1/2}$-Modifed PZT System," Jpn. J. Appl. Phys., Part 1, 28, 95-7 (1989). https://doi.org/10.7567/JJAPS.28S2.95
  25. V. O. Sherman, A. K. Tagantsev and N. Setter, "Model of a Low-Permittivity and High-Tunability Ferroelectric Based Composite," Appl. Phys. Lett., 90, 162901-3 (2007). https://doi.org/10.1063/1.2723681
  26. V. O. Sherman, A. K. Tagantsev, N. Setter, D. Iddles and T. Price, "Ferroelectric-Dielectric Tunable Composites," J. Appl. Phys., 99, 074104-10 (2006) https://doi.org/10.1063/1.2186004
  27. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, S. J. Jeong, "Electric Field-Induced Deformation Behavior in Mixed $Bi_{0.5}Na_{0.5}TiO_3$ and $Bi_{0.5}(Na_{0.75}K_{0.25})_{0.5}TiO_3-BiAlO_3$," Appl. Phys. Lett., 99, 062906-3 (2011). https://doi.org/10.1063/1.3621878
  28. T. H. Dinh, C. H. Yoon, J. K. Kang, Y. H. Hong, J. S. Lee, "Enhanced Low-Field Strain in Bi-Based Lead-Free Ferroelectric-Relaxor Composites," Ferroelectrics, 487, 142-8 (2015). https://doi.org/10.1080/00150193.2015.1071619
  29. M. Sheeraz, A. Khaliq, A. Ullah, H. S. Han, A. Khan. A. Ullah, I. W. Kim, T. H. Kim and C. W. Ahn, "Stress Driven High Electrostrain at Low Field in Incipient Piezoelectrics," J. Eur. Ceram. Soc., 39, 4688-96 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.07.049
  30. C. Groh, D. J. Franzbach, W. Jo, K. G. Webber, J. Kling, L. A. Schmitt, H. J. Kleebe, S. J. Jeong, J. S. Lee and J. Rodel, "Relaxor/Ferroelectric Composites: A Solution in the Quest for Practically Viable Lead-Free Incipient Piezoceramics," Adv. Funct. Mater., 24, 356-62 (2014). https://doi.org/10.1002/adfm.201302102
  31. T. H. Dinh, J. K. Kang, H. T. K. Nguyen, T. A. Duong, J. S. Lee, "Giant Strain in Lead- Free Relaxor/Ferroelectric Piezocomposite Ceramics," J. Korean Phys. Soc., 68, 1439-44 (2016). https://doi.org/10.3938/jkps.68.1439
  32. T. H. Dinh, V. D. N. Tran, T. T. Nguyen, Q. T. N. Hoang, H. S. Han, J. S. Lee, "The Reduced Reversible Phase Transition Field of Lead-Free Bi-Based Ceramic Composites by Adding Nonergodic Relaxor," Ceram. Int., 43, 17160-6 (2017). https://doi.org/10.1016/j.ceramint.2017.09.138
  33. C. W. Ahn, C. H. Hong, B. Y. Choi, H. P. Kim, H. S. Han, Y. Hwang, W. Jo, K. Wang, J. F. Li, I. W. Kim, "A Brief Review on Relaxor Ferroelectrics and Selected Issues in Lead-Free Relaxors," J. Korean Phys. Soc., 68, 1481-94 (2016). https://doi.org/10.3938/jkps.68.1481
  34. H. Zhang, C. Groh, Q. Zhang, W. Jo, K.G. Webber and J. Rodel, "Large Strain in Relaxor/Ferroelectric Composite Lead-Free Piezoceramics," Adv. Electron. Mater., 1, 1500018 (2015). https://doi.org/10.1002/aelm.201500018
  35. A. Khaliq, M. Sheeraz, A. Ullah, H.J. Seog, C.W. Ahn, T.H. Kim, S. Cho, I.W. Kim, "Ferroelectric Seeds-Induced Phase Evolution and Large Electrostrain Under Reduced Poling Field in Bismuth-Based Composites," Ceram. Int., 44, 13278-13285 (2018). https://doi.org/10.1016/j.ceramint.2018.04.157
  36. T. H. Dinh, J. K. Kang, J. S. Lee, N. H. Khansur, J. Daniels, H. Y. Lee, F. Z. Yao, K. Wang, J. F. Li, H. S. Han, W. Jo, "Nanoscale Ferroelectric/Relaxor Composites: Origin of Large Strain in Lead-Free Bi-Based Incipient Piezoelectric Ceramics," J. Eur. Ceram. Soc., 36, 3401-3407 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.05.044
  37. A. Khaliq, M. Sheeraz, A. Ullah, J. S. Lee, C. W. Ahn, I. W. Kim, "Large Strain in $Bi_{0.5}(Na_{0.78}K_{0.22})0.5TiO_3-Bi(Mg_{0.5}Ti_{0.5})O_3$ Based Composite Ceramics Under Low Driving Field," Sens. Actuators A Phys., 258, 174-181 (2017). https://doi.org/10.1016/j.sna.2017.03.021
  38. J. Chen, Y. Wang, Y. Zhang, Y. Yang, R. Jin, "Giant Electric Field-Induced Strain at Room Temperature in $LiNbO_3$-Doped $0.94(Bi_{0.5}Na_{0.5})TiO_3-0.06BaTiO_3$," J. Eur. Ceram. Soc., 37, 2365-2371 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.02.009
  39. M. Saleem, L. D. Hwan, I. S. Kim, M. S. Kim, A. Maqbool, U. Nisar, S. A. Pervez, U. Farooq, M. U. Farooq, H. M. W. Khalil, S. J. Jeong, "Revealing of Core Shell Effect on Frequency-Dependent Properties of Bi-Based Relaxor/Ferroelectric Ceramic Composites," Sci. Rep., 8, 14146 (2018). https://doi.org/10.1038/s41598-018-32133-7
  40. J. H. Cho, J. S. Park, S. W. Kim, Y. H. Jeong, J. S. Yun, W. I. Park, Y. W. Hong, J. H. Paik, "Ferroelectric Properties and Core Shell Domain Structures of Fe-Modified $0.77Bi_{0.5}Na_{0.5}TiO_3-0.23SrTiO_3$ Ceramics," J. Eur. Ceram. Soc., 37, 3313-3318 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.03.070
  41. Y. Zhu, Y. Zhang, B. Xie, P. Fan, M. A. Marwat, W. Ma, C. Wang, B. Yang, J. Xiao, H. Zhang, "Large Electric Field-Induced Strain in $AgNbO_3$-Modified $0.76Bi_{0.5}Na_{0.5}TiO_3-0.24SrTiO_3$ Lead-Free Piezoceramics," Ceram. Int., 44, 7851-7857 (2018). https://doi.org/10.1016/j.ceramint.2018.01.220
  42. Y. H. Hong, H. S. Han, G. H. Jeong, Y. S. Park, T. H. Dinh, C. W. Ahn, J. S. Lee, "High Electromechanical Strain Properties by the Existence of Nonergodicity in $LiNbO_3$-Modified $Bi_{1/2}Na_{1/2}TiO_3-SrTiO_3$ Relaxor Ceramics," Ceram. Int., 44, 21138-21144 (2018). https://doi.org/10.1016/j.ceramint.2018.08.156
  43. X. Liu, S. Xue, F. Li, J. Ma, J. Zhai, B. Shen, F. Wang, X. Zhao, H. Yan, "Giant Electrostrain Accompanying Structural Evolution in Lead-Free NBT-Based Piezoceramics," J. Mater. Chem. C, 6, 814-822 (2018). https://doi.org/10.1039/C7TC05359B
  44. A. Ullah, M. Alam, A. Ullah, C. W. Ahn, J. S. Lee, S. Cho, I. W. Kim, "High Strain Response in Ternary $Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-Bi(Mn_{0.5}Ti_{0.5})O_3$ Solid Solutions," RSC Adv., 6, 63915-63921 (2016). https://doi.org/10.1039/C6RA08240H
  45. T. R. Shrout, S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19, 111-124 (2007).
  46. N. J. Donnelly, T. R. Shrout, C. A. Randall, "Addition of a Sr, K, Nb (SKN) Combination to PZT(53/47) for High Strain Applications" J. Am. Ceram. Soc., 90, 490-495 (2007). https://doi.org/10.1111/j.1551-2916.2006.01450.x

Cited by

  1. Large Electric Field-Induced Strain Response Under a Low Electric Field in Lead-Free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 Ternary Piezoelectric Ceramics vol.49, pp.11, 2020, https://doi.org/10.1007/s11664-020-08436-9
  2. Bi0.5Na0.5TiO3-BiFeO3-SrTiO3 삼성분계 무연 압전 세라믹스의 강유전체-완화형 강유전체 상전이 거동 vol.34, pp.1, 2021, https://doi.org/10.4313/jkem.2021.34.1.1