A Study on the Design of Small SMT Platform for Education

교육용 소형 SMT 플랫폼 설계에 관한 연구

  • 박세준 (목원대학교 지능로봇공학과)
  • Received : 2020.02.13
  • Accepted : 2020.03.29
  • Published : 2020.03.30

Abstract

This paper designed and manufactured a chip mounter based on 3D printer technology that can be used for educational research or sample production to disseminate chip mounter, a core technology of SMT line. A stepper motor with open loop control is used for low cost drive design. The shortcomings of the motor's vibration and disassembly caused by the use of the step motor were compensated by the Micro-Step control method. In the chip mounter experiment, the gerber file was generated on the small chip mounter, printed at the actual size, and the solder cream was printed on the HASL-treated PCB in the same manner as the sample board fabrication. As a result of the experiment, unlike the 2012 micro components, parts such as SOIC and TQFP that require correction are twice as long as the component mounting time, but it can be confirmed that they are mounted relatively accurately. In addition, as a result of repeatedly measuring the error of the initial position 10 times, it was confirmed that a relatively small error of about 0.110mm occurs.

본 논문은 SMT라인의 핵심 기술인 칩마운터의 보급을 위해 교육연구용이나 샘플제작을 목적으로 사용이 가능한 3D 프린터 기술기반의 칩마운터를 설계하고 제작하였다. 저가형 구동부 설계를 위해 오픈루프제어가 가능한 스텝모터를 사용하였다. 스텝모터 사용으로 발생하는 모터의 진동, 탈조 등의 특성상 단점은 마이크로스텝제어 방법을 이용하여 보완하였다. 칩마운터 실험은 제작한 소형 칩마운터에 거버파일을 생성하고 실제 크기로 프린트하여 샘플보드 제작과 동일한 방법으로 HASL 처리되어 있는 PCB에 솔더크림을 프린팅한 후 부품을 실장하여 여러 번 반복해서 수행하였다. 실험결과 2012 미소부품과 달리 보정이 필요한 SOIC, TQFP 등의 부품은 부품 실장 시간이 2배정도 길었지만 비교적 정확히 실장되는 것을 확인할 수 있었다. 또한, 초기 위치에 대한 오차를 총 10회에 반복하여 측정한 결과 약 0.110mm의 비교적 적은 오차가 발생함을 확인할 수 있었다.

Keywords

Acknowledgement

본 연구는 2018 년도 산학연협력 기술개발사업(첫걸음 협력) 지원에 의하여 이루어짐(S2654311)

References

  1. Young-Min Kim, Hyun-Jong Kim, Sun-Chon Um, Heon-Tag Kong, Chi-Su Kim, "The surface mounting technology to prevent improper fine chip insertions by using fiber sensors", Journal of the Korea Academia-Industrial Cooperation Society, Vol. 12, No. 9, pp. 4138~4146, 2011. https://doi.org/10.5762/KAIS.2011.12.9.4138
  2. Young-Gyu Kim, Tae-Hyoung Park, "SMT Defect Classification by CNN and Input Image Transform", Journal of Institute of Control, Robotics and Systems, Vol. 25, No. 3, pp. 260~267, 2019. https://doi.org/10.5302/j.icros.2019.18.0194
  3. Jae Heon, Lee, "A Study on the Development and Application of the Chip Mounter Dual Multi Head", Master's Thesis, School of Mechanical Eng., Graduate School of Industry, Ajou Univ., Suwon, Korea, 2007
  4. Wonhee Kim, Donghoon Shin, Youngwoo Lee, Chung Choo Chung, "Survey of Nonlinear Control Methods to Permanent Magnet Stepping Motors", Journal of Institute of Control, Robotics and Systems, Vol. 20, No. 3, pp. 323~332, 2014. https://doi.org/10.5302/J.ICROS.2014.14.9019
  5. P. P. Acarnley, "Stepping Motors: A Guide to Modern Theory and Practice". NewYork: Peregrinus, 1982.
  6. T. Kenjo, "Stepping Motors and Their Microprocessor Control". New York: Clarendon, 1984.
  7. D. W. Jones, Control of Stepping Motors. In W. H. Yeadon, & A. W. Yeadon, Handbook of Small Electric Motors, New York: McGraw-Hill, 2001.
  8. Acarnley, Paul, "Stepping Motors: A Guide to Theory and Practice", 4th edition. London: Institution of Electrical Engineers, 2002.
  9. David Austin, "Generate stepper-motor speed profiles in real time", Freelance software engineer United Kingdom. 2005.
  10. T. Kenjo, "Stepping Motors and Their Microprocessor Control". New York: Clarendon, 1984.
  11. Kenjo, Takashi and Akira Sugawara, "Stepping Motors and their Microprocessor Controls", 2nd edition. Oxford University Press, March, 1995.
  12. W. Kim, D. Shin, and C. C. Chung, "Lyapunov-based controller with a passive nonlinear observer to improve position tracking performance of microstepping in permanent magnet stepper motors," Automatica, vol. 48, no. 12, pp. 3064-3074, 2012. https://doi.org/10.1016/j.automatica.2012.08.035
  13. AVR446: Linear speed control of stepper motor. Application Note. 2006 Atmel Corporation