DOI QR코드

DOI QR Code

Characteristics of SO2 Oxidation of Pt/TiO2 Catalyst according to the Properties of Platinum Precursor

Platinum Precursor 특성에 따른 Pt/TiO2 촉매의 SO2 산화 반응특성 연구

  • Kim, Jae Kwan (Korea Electric Power Research Institute) ;
  • Park, Seok Un (Korea Electric Power Research Institute) ;
  • Nam, Ki Bok (Materials Architecturing Research Center, Korea Institute of Science and Technology) ;
  • Hong, Sung Chang (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 김재관 (한국전력공사 전력연구원) ;
  • 박석운 (한국전력공사 전력연구원) ;
  • 남기복 (한국과학기술연구원 물질구조제어연구센터) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2020.05.15
  • Accepted : 2020.06.01
  • Published : 2020.08.10

Abstract

In this study, an analysis on the reaction characteristics of a catalyst using platinum (Pt) as an active oxidation metal catalyst for controlling SO2 was performed. Pt/TiO2 catalyst was prepared by using Pt as various precursor forms on a titania (TiO2) support, and used for the experiment. There was no difference in performance of SO2 oxidation according to Pt valence states such as Pt2+ or Pt4+ on Pt/TiO2, and Pt chloride species such as PtClx reduces SO2 oxidation performance. In addition, as a result of analyzing the valence state of the catalyst before and after the SO2 oxidation reaction by XPS analysis, a decrease in lattice oxygen and an increase in surface chemisorbed oxygen after the SO2 oxidation reaction were confirmed. Therefore it can be suggested that the oxidation reaction of SO2 when using the Pt/TiO2 catalyst is the major one following the Mar-Van Krevelen mechanism where the reaction of lattice oxygen corresponding to PtOx and the oxidation-reduction reaction by oxygen vacancy occur. Overall, it can be confirmed that the oxygen species of PtOx (Pt2+ or Pt4+) present on the catalyst acts as a major active site.

본 연구에서는 SO2를 제어하기 위한 산화 촉매에서 platinum (Pt)을 활성금속으로 하는 촉매의 반응특성에 관한 분석을 수행하였다. Titania (TiO2) 지지체에 다양한 precursor 형태의 Pt를 사용하여 Pt/TiO2 촉매를 제조하여 실험에 사용하였다. Pt/TiO2 상의 Pt2+ 또는 Pt4+와 같은 Pt valence state에 따른 SO2 산화의 성능 차이는 나타나지 않으며, PtClx과 같은 Pt chloride species는 전체적으로 SO2 산화 성능을 감소시킨다. 또한, XPS 분석을 수행하여 SO2 산화 반응 전/후의 촉매상의 valence state를 분석한 결과 SO2 산화반응 이후 lattice oxygen의 감소 및 surface chemisorbed oxygen의 증가를 확인할 수 있다. 따라서 Pt/TiO2 촉매의 SO2의 산화 반응은 PtOx에 해당하는 lattice oxygen의 반응과 oxygen vacancy에 의한 산화-환원 반응이 진행되는 Mar-Van Krevelen 메커니즘이 주요한 SO2 산화 반응임을 판단할 수 있으며, 이러한 결과를 통하여 촉매 상에 존재하는 PtOx (Pt2+ 또는 Pt4+)의 oxygen species가 주요한 활성 site로 작용함을 확인할 수 있다.

Keywords

References

  1. P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144(15), 274-286 (2015). https://doi.org/10.1016/j.fuel.2014.12.065
  2. J. Armor, Environmental catalysis, Appl. Catal. B: Environ., 1(4), 221-256 (1992). https://doi.org/10.1016/0926-3373(92)80051-Z
  3. N. Ohlms, DeSOxNOx process for flue gas cleaning, Catal. Today, 16(2), 247-261 (1993). https://doi.org/10.1016/0920-5861(93)85022-R
  4. I. Giakoumelou, V. Parvulescu, and S. Boghosian, Oxidation of sulfur dioxide over supported solid $V_2O_5$/$SiO_2$ and supported molten salt $V_2O_5$-$Cs_2SO_4$/$SiO_2$ catalysts: Molecular structure and reactivity, J. Catal., 225, 337-349 (2004). https://doi.org/10.1016/j.jcat.2004.04.012
  5. G. K. Boreskov, Catalysis in Sulphuric Acid Production, 348, Goskhimizdat (in Russian), Moskow (1954).
  6. J. H. Frazer and W. J. Kirkpatrick, A new mechanism for the action of the vanadium pentoxide-silica-alkali pyrosulfate catalyst for the oxidation of sulfur dioxide, J. Am. Chem. Soc., 62(7), 1659-1660 (1940). https://doi.org/10.1021/ja01864a007
  7. K. M. Eriksen, C. K. Jensen, S. B. Rasmussen, C. Oehlers, B. S. Bal'zhinimaev, and R. Fehrmann, EPR spectroscopic characterization of $DeNO_x$ and $SO_2$ oxidation catalysts and model systems, Catal. Today, 54(4), 465-472 (1999). https://doi.org/10.1016/S0920-5861(99)00209-6
  8. I. Giakoumelou, R. M. Caraba, V. I. Parvulescu, and S. Boghosian First in situ raman study of vanadium oxide based $SO_2$ oxidation supported molten salt catalysts, Catal. Lett., 78(1-4), 209-214 (2002). https://doi.org/10.1023/A:1014957302360
  9. A. Christodoulakis and S. Boghosian, Molecular structure of supported molten salt catalysts for $SO_2$ oxidation, J. Catal., 215, 139-150 (2003). https://doi.org/10.1016/S0021-9517(02)00158-6
  10. S. Koutsopoulos, S. B. Rasmussen, K. M. Eriksen, and R. Fehrmann, The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts, Appl. Catal. A: Gen., 306(7), 142-148 (2006). https://doi.org/10.1016/j.apcata.2006.03.041
  11. H. N. Sharma, Y. Sun, and E. A. Glascoe, Microkinetic modeling of $H_2SO_4$ formation on Pt based diesel oxidation catalysts, Appl. Catal. B: Environ., 220, 348-335 (2018). https://doi.org/10.1016/j.apcatb.2017.08.025
  12. J. P. Dunn, P. R. Koppula, H. G. Stenger, and I. E. Wachs, Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts, Appl. Calal. B: Environ., 19, 103-117 (1998). https://doi.org/10.1016/S0926-3373(98)00060-5
  13. D. W. Kwon and S. C. Hong, Enhancement of performance and sulfur resistance of ceria-doped V/Sb/Ti by sulfation for selective catalytic reduction of NOx with ammonia, RSC Adv., 6, 1169-1181 (2016). https://doi.org/10.1039/C5RA21913B
  14. M. R. Bankmann, R. Brand, B. H. Enger, and J. Ohmer, Foming of high surface area $TiO_2$ to catalyst supports, Catal. Today, 14, 225-242 (1992). https://doi.org/10.1016/0920-5861(92)80025-I
  15. Y. Sarbassov, L. Duan, V. Manovic, and E. J. Anthony, Sulfur trioxide formation/emissions in coal-fired air-and oxy-fuel combustion processes: A review, Greenhouse Gas Sci. Technol., 8, 402-428 (2018). https://doi.org/10.1002/ghg.1767
  16. X. Du, J. Xue, X. Wang, Y. Chen, J. Ran, and L. Zhang, Oxidation of sulfur dioxide over $V_2O_5$/$TiO_2$ catalyst with low vanadium loading: A theoretical study, J. Phys. Chem. C, 122(8), 4517-4523 (2018). https://doi.org/10.1021/acs.jpcc.8b00296
  17. M. A. V. Spronsen, J. W. M. Frenken, and I. M. N. Groot, Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts, Chem. Soc. Rev., 46, 4347-4374 (2017). https://doi.org/10.1039/C7CS00045F
  18. V. L. Boris and K. G. Andrew, Catalytic oxidation of hydrogen on platinum, J. Therm. Anal. Calorim, 112, 815-223 (2013). https://doi.org/10.1007/s10973-012-2567-0
  19. G. J. Kim, S. M. Lee, S. C. Hong, and S. S. Kim, Active oxygen species adsorbed on the catalyst surface and its effect on formaldehyde oxidation over Pt/$TiO_2$ catalysts at room temperature; Role of the Pt valence state on this reaction?, RSC Adv., 8, 3626-3636 (2018). https://doi.org/10.1039/C7RA11294G
  20. K. Czupryn, I. Kocemba, and J. Rynkowski, Photocatalytic CO oxidation with water ove Pt/$TiO_2$ catalysts, Reac. Kinet. Mech. Cat., 124, 187-201 (2018). https://doi.org/10.1007/s11144-017-1334-4
  21. Y. Liang, X. Ding, M. Zhao, J. Wang, and Y. Chen, Effect of valence state and particle size on NO oxidation in fresh and aged Pt-based diesel oxidation catalysts, Appl. Surf. Sci., 443(15), 336-344 (2018). https://doi.org/10.1016/j.apsusc.2018.03.032
  22. G. J. Kim, D. W. Kwon, J. H. Shin, K. W. Kim, and S. C. Hong, Influence of the addition of vanadium to Pt/$TiO_2$ catalyst on the selective catalytic oxidation of $NH_3$ to $N_2$, Environ. Technol., 40(19), 2588-2600 (2019). https://doi.org/10.1080/09593330.2018.1554004
  23. A. Borgna, T. F. Garetto, C. R. Apestequ, F. L. Normand, and B. Moraweck, Sintering of chlorinated Pt/$\gamma$-$Al_2O_3$ catalysts: An in situ study by X-ray absorption spectroscopy, J. Catal., 186, 433-441 (1999). https://doi.org/10.1006/jcat.1999.2557
  24. S. S. Kim, K. H. Park, and S. C. Hong, A study on HCHO oxidation characteristics at room temperature using a Pt/$TiO_2$ catalyst, Appl. Catal. A: Gen., 398, 96-103 (2011). https://doi.org/10.1016/j.apcata.2011.03.018
  25. B. A. De Angelis, Metal-support and metal-additive effects in catalysis, J. Mol. Catal., 19, 289-289 (1983). https://doi.org/10.1016/0304-5102(83)80107-2
  26. S. Proch, J. Herrmannsdorfer, R. Kempe, C. Kern, A. Jess, L. Seyfarth, and J. Senker, Pt@MOF-177: Synthesis, room-temperature hydrogen storage and oxidation catalysis, Chem. Eur. J., 14, 8204-8212 (2008). https://doi.org/10.1002/chem.200801043
  27. C. Wang, X.K. Gu, H. Yan, Y. Lin, J. Li, D. Liu, W.X. Li, and J. Lu, Water-mediated Mars-Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst, ACS Catal., 7, 887-891 (2017). https://doi.org/10.1021/acscatal.6b02685