DOI QR코드

DOI QR Code

Evaluation for Antioxidant Effects and Water-holding Capacity of Rice Protein Extracts from Cheongwon Area

청원 지역 쌀단백질 추출물의 항산화 및 수분 보유력 평가

  • Received : 2020.06.16
  • Accepted : 2020.07.10
  • Published : 2020.08.10

Abstract

In this study, six kinds of rice grown in Cheongwon area were extracted using glycolytic and proteolytic enzymes, and also antioxidant effects and water holding capacity of rice protein extracts were compared and analyzed. Protein contents of rice cultivars protein extract showed that black rice (BR) extract was the highest at 4,900 ㎍/mL, and flavored brown rice (FBR) extract was the lowest at 3,700 ㎍/mL. 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical scavenging activity was confirmed the superior activity of more than 80.0% at a concentration of 2 mg/mL with BR and red brown rice (RBR) extracts. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging activity at a concentration of 2 mg/mL with BR and RBR extracts was more than 70.0% The water holding capacity for extracts using RBR, red-kerneled brown rice (RKBR), BR and FBR was more than 110.0%. Overall, the rice protein extract using BR has excellent antioxidant and water holding capacity which can be used as a potential skin moisturizer and antioxidant functional cosmetic material.

본 연구에서는 청원지역에서 재배하고 있는 6품종의 쌀을 당 분해 효소 및 단백질 분해 효소를 이용하여 쌀단백질 추출물을 제조하고, 항산화 효과 및 수분보유력을 비교 분석하였다. 품종별 쌀단백질 추출물의 단백질 함량을 측정한 결과 흑미 추출물이 4900 ㎍/mL로 가장 높게 나타났고, 향찰현미 추출물이 3700 ㎍/mL로 가장 낮게 나타났다. 2,2-diphenyl-1-picryl-hydrazyl-hydrate 라디칼 소거 활성 결과 흑미 추출물과 홍현미 추출물이 2 mg/mL에서 80.0% 이상의 우수한 소거 활성을 확인하였다. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) 라디칼 소거 활성은 흑미 추출물과 홍현미 추출물이 2 mg/mL에서 70.0% 이상의 소거 활성을 나타내었다. 수분보유력 평가 결과는 홍현미, 홍찰현미, 흑미, 향찰현미를 이용한 추출물은 수분보유력이 110% 이상임을 확인하였다. 종합적으로 흑미를 이용한 쌀단백질 추출물이 항산화 및 수분보유력이 우수한 효과를 나타냄으로써 피부 보습 및 항산화 기능성 화장품 소재로 응용가능성이 있음을 시사한다.

Keywords

References

  1. R. H. Jeong, D. Y. Lee, J. G. Cho, Y. S. Baek, and K. H. Seo, Isolation and identification of adenosine and phlomuroside from the aerial parts of Oryza sativa L., J. Appl. Biol. Chem., 57(4), 321-324 (2014). https://doi.org/10.3839/jabc.2014.050
  2. Y. G. Kim, Current status and future prospects of development of rice varieties, Food Preserv. Process. Ind., 9, 75-85 (2010).
  3. J. L. F. Monks, N. L. Vanier, J. Casaril, R. M. Berto, M. Oliveira, C. B. Gomes, M. P. Carvalho, A. R. G. Dias, and M. C. Elias, Effects of milling on proximate composition, folic acid: Fatty acids and technological properties of rice, J. Food Compos. Anal., 30(2), 73-79 (2013). https://doi.org/10.1016/j.jfca.2013.01.009
  4. K. A. Kim and E. R. Jeon, Physicochemical properties and hydration of rice on various polishing degress, J. Korean Food Sci. Technol., 28(5), 959-964 (1996).
  5. S. Y. Lee, K. W. Pyun, and Y. J. Park, Comparative studies on hydration kinetics of raw fermented brown rice, Food Eng. Progress., 6(2), 178-185 (2002).
  6. D. Coppini, P. Paganizzi, P. Santi, and A. Ghirardini, Capacita protettiva nei confronti delle radiazioni solari di derivati di origine vegetable, Cosm. News., 136, 15-20 (2001).
  7. M. J. Lerma-Garcia, J. M. Herrero-Martínez, E. F. Simo-Alfonso, C. R. B. Mendonca, and G. Ramis-Ramos, Composition industrial processing and applications of rice bran gamma-oryzanol, Food Chem., 115(2), 389-404 (2009). https://doi.org/10.1016/j.foodchem.2009.01.063
  8. S. J. Ha, J. Park, J. Lee, K. M. Song, M. Y. Um, S. Cho, and S. K. Jung, Rice bran supplement prevents UVB-induced skin photoaging in vivo, Biosci. Biotechnol. Biochem., 82(2), 320-328 (2018). https://doi.org/10.1080/09168451.2017.1417021
  9. L. A. Rigo, C. R. Silva, S. M. Oliveira, T. N. Cabreira, J. Ferreira, and R. C. Beck, Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice, Eur. J. Pharm. Biopharm., 93, 11-17 (2015). https://doi.org/10.1016/j.ejpb.2015.03.020
  10. D. S. Bernardi, T. A. Pereira, N. R. Maciel, J. Bortoloto, G. S. Viera, G. C. Oliveira, and P. A. Rocha-Filho, Formation and stability of oil-in-water nanoemulsions containing rice bran oil: In vitro and in vivo assessments, J. Nanobiotechnol., 9(1), 44 (2011). https://doi.org/10.1186/1477-3155-9-44
  11. E. Saba, C. H. Lee, H. Jeong, K. Lee, T. H. Kim, S. S. Roh, S. H. Kim, and M. H. Rhee, Fermented rice bran prevents atopic dermatitis in DNCB-treated NC/Nga mice, J. Biomed. Res., 30(4), 334-343 (2016).
  12. M. Kanlayavattanakul, N. Lourith, and P. Chaikul, Jasmine rice panicle: A safe and efficient natural ingredient for skin aging treatments, J. Ethnopharmacol., 193, 607-616 (2016). https://doi.org/10.1016/j.jep.2016.10.013
  13. A. Manosroi, R. Chutoprapat, M. Abe, W. Manosroi, and J. Manosroi, Anti-aging efficacy of topical formulations containing niosomes entrapped with rice bran bioactive compounds, Pharm. Biol., 50(2), 208-224 (2012). https://doi.org/10.3109/13880209.2011.596206
  14. J. S. Choi, J. B. Park, W. S. Moon, J. N. Moon, S. W. Son, and M. R. Kim, Safety and efficacy of rice bran supercritical $CO_2$ extract for hair growth in androgenic alopecia: A 16-week double- blind randomized controlled trial, Biol. Pharm. Bull., 38(12), 1856-1863 (2015). https://doi.org/10.1248/bpb.b15-00387
  15. T. Morita, A. Oh-hashi, S. Kasaoka, M. Ikai, and S. Kiriyama, Rice protein isolates produced by the two different methods lower serum cholesterol concentration in rats compared with casein, J. Sci. Food Agric., 71(4), 415-424 (1996). https://doi.org/10.1002/(SICI)1097-0010(199608)71:4<415::AID-JSFA599>3.0.CO;2-6
  16. M. Kubota, Y. Sato, T. Masumura, T. Kumagai, R. Watanabe, S. Fujimura, and M. Kadowali, Improvement in the in vitro digestibility of rice protein by alkali extraction is due to structural changes in prolamin/protein body-I particle, Biosci. Biotechnol. Biochem., 74(3), 614-619 (2010). https://doi.org/10.1271/bbb.90827
  17. T. Kumagai, H. Kawamura, T. Fuse, T. Watanabe, Y. Sato, T. Masumura, R. Watanabe, and M. Kadowaki, Production of rice protein by alkaline extraction improves its digestibility, J. Nutr. Sci. Vitaminol., 52(6), 467-472 (2006). https://doi.org/10.3177/jnsv.52.467
  18. B. O. Juliano, Rice: Chemistry and Technology, American Association of Cereal Chemists, 757 (1985).
  19. B. O. Juliano and M. S. Goddard, Cause of varietal difference in insulin and glucose responses to digested rice, Plant Foods Hum. Nutr., 36(1), 35-41 (1986). https://doi.org/10.1007/BF01091751
  20. B. O. Juliano, Rice: Chemistry and Technology, American Association of Cereal Chemists, 774 (1986).
  21. K. Shimada, K. Fujikawa, and K. Yahara, Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion, J. Agric. Food Chem., 40(6), 945-948 (1992). https://doi.org/10.1021/jf00018a005
  22. R. Ven den Berg, G. R. Haenen, H. Van den Berg, and A. Bast, Applicability of an improved trolox equivalent anti-oxidant capacity (TEAC) assay for evaluation of anti-oxidant capacity measurements of mixture, Food Chem., 66(4), 511-517 (1999). https://doi.org/10.1016/S0308-8146(99)00089-8
  23. C. Wang, Q. Fan, and X. Zhang, Isolation, characterization, and pharmaceutical applications of an exopolysaccharide from Aerococcus uriaeequi, Mar. Drugs, 16(9), 337-350 (2018). https://doi.org/10.3390/md16090337
  24. T. Y. Ha, S. H. Park, C. H. Lee, and S. H. Lee, Chemical composition of pigmented rice varieties, Korean J. Food Sci. Technol., 31, 336-341 (1999).
  25. J. C. Heo, J. Y. Park, and S. M. An, Antioxidant and antitumor activities of crude extracts by Gastrodia elata Blume, J. Korean Food Preserv., 13(1), 83-87 (2006).
  26. E. J. Na, H. H. Jang, G. R. Kim, E. J. Na, H. H. Jang, and G. R. Kim, Review of recent studies and research analysis for anti-oxidant and anti-aging materials, Asian J. Beauty Cosmetol., 14(4), 481-491 (2016). https://doi.org/10.20402/ajbc.2016.0107
  27. S. H. Kong, Y. M. Choi, S. Lee, and J. S. Lee, Antioxidant compounds and antioxidant activities of the methanolic extracts from milling fractions of black rice, J. Korean Soc. Food Sci. Nutr., 37, 815-819 (2008). https://doi.org/10.3746/JKFN.2008.37.7.815
  28. T. Oki, M. Masuda, M. Kobayashi, and Y. Nishiba, Polymeric procyanidins as radical-scavenging components in redhulled rice, J. Agric. Food Chem., 50, 7524-7529 (2002). https://doi.org/10.1021/jf025841z
  29. D. Villano, M. S. Fernandez-Pachon, M. L. Moya, A. M. Troncoso, and M. C. Garcia-Parrilla, Radical scavenging ability of polyphenolic compounds towards DPPH free radical, Talanta., 71, 230-235 (2007). https://doi.org/10.1016/j.talanta.2006.03.050
  30. H. Li, Y. M. Choi, J. S. Lee, J. S. Park, K. S. Yeon, and C. S. Han, Drying and antioxidant characteristics of the shiitake (Lentinus edodes) mushroom in a conveyer type far-infrared dryer, J. Korean Soc. Food Sci. Nutr., 36(2), 250-254 (2007). https://doi.org/10.3746/JKFN.2007.36.2.250
  31. D. J. Kim, S. K. Oh, M. R. Yoon, A. R. Chun, H. C. Hong, J. S. Lee, and Y. K. Kim, Antioxidant compounds and antioxidant activities of the 70% ethanol extracts from brown and milled rice by cultivar, J. Korean Soc. Food Sci. Nutr., 39, 467-473 (2010). https://doi.org/10.3746/JKFN.2010.39.3.467
  32. K. Jung, Value and utilization of rice protein, Food Sci. Ind., 52(1), 60-67 (2019).