DOI QR코드

DOI QR Code

Effects of Ultrasonic Amplitude on Electrochemical Properties During Cavitation of Carbon Steel in 3.5% NaCl Solution

  • Jang, I.J. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Yoo, Y.R. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, Y.S. (Materials Research Centre for Energy and Clean Technology, School of Materials Science and Engineering, Andong National University)
  • Received : 2020.08.04
  • Accepted : 2020.08.22
  • Published : 2020.08.31

Abstract

Cavitation corrosion in many industrial plants has recently become a serious issue. Cavitation corrosion has generally been investigated using a vibratory method based on ASTM G32 standard, and the test can be divided into direct cavitation and indirect cavitation. Cavitation corrosion test uses the vibration frequency of the horn of 20 kHz with constant peak-to-peak displacement amplitude. In this work, the peak-to-peak amplitude was controlled from 15 ㎛ to 85 ㎛, and electrochemical measurements were obtained during indirect cavitation. The relationship between cavitation corrosion rate and electrochemical properties was discussed. Corrosion steps of carbon steel at the initial stage under cavitation condition in 3.5 % NaCl can be proposed. When the cavitation strength is relatively low, corrosion of the steel is more affected by the electrochemical process than by the mechanical process; but when the cavitation strength is relatively high, corrosion of the steel is affected more by the mechanical process than by the electrochemical process. This work confirmed that the critical ultrasonic amplitude of 0.42 %C carbon steel is 53.8 ㎛, and when the amplitude is less than 53.8 ㎛, the corrosion effect during the cavitation corrosion process is higher than the mechanical effect.

Keywords

References

  1. J. A. Jeong, M. S. Kim, S. D. Yang, C. H. Hong, N. K. Lee, and D. H. Lee, J. Kor. Soc. Mar. Eng., 42, 280 (2018). http://dx.doi.org/10.5916/jkosme.2018.42.4.280
  2. S. Y. Lee, K. H. Lee, C. U. Won, S. Na, Y. G. Yoon, M. H. Lee, Y. H. Kim, K. M. Moon, and J. G. Kim, J. Ocean Eng. Technol., 27, 79 (2013). https://doi.org/10.5574/KSOE.2013.27.3.079
  3. J. H. Jeong, Y. H. Kim, K. M. Moon, M. H. Lee, and J. G. Kim, J. Kor. Soc. Mar. Eng., 37, 877 (2013). https://doi.org/10.5916/jkosme.2013.37.8.877
  4. Y. Huang and D. Ji, Sensor. Actuat. B-Chem., 135, 375 (2008). https://doi.org/10.1016/j.snb.2008.09.008
  5. S. Nesic, Corros. Sci., 49, 4308 (2007). https://doi.org/10.1016/j.corsci.2007.06.006
  6. S. A. A. Buhri, D. K. Kaithari, and E. Rasu, Int. J. Stud. Res. Technol. Manag., 4, 24 (2016). https://doi.org/10.18510/ijsrtm.2016.421
  7. L. Wang, N. Qiu, D. -H. Hellmann, and X. Zhu, J. Mech. Sci. Technol., 30, 533 (2016). https://doi.org/10.1007/s12206-016-0106-9
  8. I. Tzanakis, L. Bolzoni, D. G. Eskin, and M. Hadfield, Metall. Mater. Trans. A, 48, 2193 (2017). https://doi.org/10.1007/s11661-017-4004-2
  9. H. Sun, J. Mech. Sci. Technol., 26, 2535(2012). https://doi.org/10.1007/s12206-012-0633-y
  10. S. B. Um, Master Thesis, p. 4, Andong National University, Gyeongbuk (2017).
  11. A. Thiruvengadam, J. Basic Eng., 85, 365 (1963). https://doi.org/10.1115/1.3656610
  12. M. S. Plesset and A. T. Ellis, Wear, 1, 455 (1955). https://doi.org/10.1016/0043-1648(58)90222-9
  13. B. Vyas and C. M. Preece, Metall. Trans. A, 8, 915 (1977). https://doi.org/10.1007/BF02661573
  14. S. J. Lee and S. J. Kim, Corros. Sci. Tech., 11, 205 (2012). https://doi.org/10.14773/cst.2012.11.5.205
  15. S. J. Lee, J. H. Lee, and S. J. Kim, Corros. Sci. Tech., 14, 140 (2015). https://doi.org/10.14773/cst.2015.14.3.140
  16. ASTM G32-16, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, ASTM International, West Conshohocken, PA (2016). http://doi.org/10.1520/G0032-16
  17. K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 17, 310 (2018). https://doi.org/10.14773/cst.2018.17.6.310
  18. C. Haosheng, L. Jiang, C. Darong, and W. Jiadao, Wear, 265, 692 (2008). https://doi.org/10.1016/j.wear.2007.12.011
  19. C. A. Silva, I. B. Varela, F. O. Kolawole, A. P. Tschiptschin, and Z. Panossian, Wear, 452-453, 203282 (2020). https://doi.org/10.1016/j.wear.2020.203282
  20. C. J. Lin and J. L. He, Wear, 259, 154 (2005). https://doi.org/10.1016/j.wear.2005.02.099
  21. J. T. Chang, C. H. Yeh, J. L. He, and K. C. Chen, Wear, 255, 162 (2003). https://doi.org/10.1016/S0043-1648(03)00199-6
  22. S. Z. Luo, Y. G. Zheng, M. C. Li, Z. M. Yao, and W. Ke, Corrosion, 59, 597 (2003). https://doi.org/10.5006/1.3277590
  23. Y. Zheng, S. Luo, and W. Ke, Wear, 262, 1308 (2007). https://doi.org/10.1016/j.wear.2007.01.006
  24. W. Gou, H. Zhamg, H. Li, F. Liu, and J. Lian, Wear, 412-413, 120 (2018). https://doi.org/10.1016/j.wear.2018.07.023
  25. S. Hattori, T. Ogso, Y. Minami, and I. Yamada, Wear, 265, 1619 (2008). https://doi.org/10.1016/j.wear.2008.03.012
  26. D. Yan, J. Wang, F. Liu, and D. Chen, Wear, 303, 419 (2013). https://doi.org/10.1016/j.wear.2013.03.024
  27. F. N. da Silva, P. M. de Oliveira, N. M. da Fonseca, T. de Souza Araujo, E. T. de Carbalho Filho, J. D. da Cunha, D. R. da Silva, and J. T. N. de Medeiros, Revista Materia, 24, e12302 (2019). https://doi.org/10.1590/s1517-707620190001.0639
  28. C. Sedano-de la Rosa, M. Vite-Torres, J. G. Godinez-Salcedo, E. A. Gallardo-Hernandez, R. Cuamatzi-Melendez, and L. I. Farfan-Cabrera, Wear, 376-377, 549 (2017). https://doi.org/10.1016/j.wear.2016.12.063
  29. A. K. Krella, D. E. Zakrzewska, and A. Marchewicz, Wear, 452-453, 203-295 (2020). https://doi.org/10.1016/j.wear.2020.203295
  30. C. Lin, Q. Zhao, X. Zhao, and Y. Yang, Int. J. Georesources Environ., 4, 1 (2018). https://doi.org/10.15273/ijge.2018.01.001
  31. KS D 3752, Carbon steel for machine structural use (2019).
  32. S. Y. Hur, K. T. Kim, and Y. S. Kim, Corros. Sci. Tech., 18, 129 (2019). https://doi.org/10.14773/cst.2019.18.4.129
  33. H. Y. Yang, Advanced Metallic Materials, p. 182, Munundang, Seoul, Korea (2011).
  34. D. N. Staicopolus, J. Electrochem. Soc., 110, 1121 (1963). https://doi.org/10.1149/1.2425602
  35. N. Ochoa, C. Vega, N. Pebere, J. Lacaze, and J. L. Brito, Mater. Chem. Phys., 156, 198 (2015). https://doi.org/10.1016/j.matchemphys.2015.02.047

Cited by

  1. Al 6061-T6 합금의 해수 내 캐비테이션 진폭에 따른 캐비테이션-침식 조건하에서 전기화학적 특성 vol.19, pp.6, 2020, https://doi.org/10.14773/cst.2020.19.6.318