DOI QR코드

DOI QR Code

Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation

  • Bendenia, Noureddine (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Zidour, Mohamed (Laboratory of Geomatics and Sustainable Development, University of Tiaret) ;
  • Bousahla, Abdelmoumen Anis (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Bourada, Fouad (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Tounsi, Abdeldjebbar (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Benrahou, Kouider Halim (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Bedia, E.A. Adda (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals) ;
  • Mahmoud, S.R. (GRC Department, Jeddah Community College, King Abdulaziz University) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes)
  • Received : 2020.05.03
  • Accepted : 2020.08.05
  • Published : 2020.09.25

Abstract

The present study covenants with the static and free vibration behavior of nanocomposite sandwich plates reinforced by carbon nanotubes resting on Pasternak elastic foundation. Uniformly distributed (UD-CNT) and functionally graded (FG-CNT) distributions of aligned carbon nanotube are considered for two types of sandwich plates such as, the face sheet reinforced and homogeneous core and the homogeneous face sheet and reinforced core. Based on the first shear deformation theory (FSDT), the Hamilton's principle is employed to derive the mathematical models. The obtained solutions are numerically validated by comparison with some available cases in the literature. The elastic foundation model is assumed as one parameter Winkler - Pasternak foundation. A parametric study is conducted to study the effects of aspect ratios, foundation parameters, carbon nanotube volume fraction, types of reinforcement, core-to-face sheet thickness ratio and types of loads acting on the bending and free vibration analyses. It is explicitly shown that the (FG-CNT) face sheet reinforced sandwich plate has a high resistance against deflections compared to other types of reinforcement. It is also revealed that the reduction in the dimensionless natural frequency is most pronounced in core reinforced sandwich plate.

Keywords

Acknowledgement

The first Author would like to acknowledge the support provided by the Directorate General for Scientific Research and Technological Development (DGRSDT).

References

  1. Abdulrazzaq, M.A. Kadhim, Z.D., Faleh, N.M. and Moustafa, N.M. (2020b), "A numerical method for dynamic characteristics of nonlocal porous metal-ceramic plates under periodic dynamic loads", Struct. Monit. Mainten., 7(1), 27-42. https://doi.org/10.12989/smm.2020.7.1.027
  2. Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020a), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147
  3. Abed, Z.A.K. and Majeed, W.I. (2020), "Effect of boundary conditions on harmonic response of laminated plates", Compos. Mater. Eng., 2(2), 125-140. https://doi.org/10.12989/cme.2020.2.2.125.
  4. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
  5. Ajayan, P.M., Stephen, O., Colliex, C. and Trauth, D. (1994), "Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite", Sci., 256, 1212-1214. https://doi.org/10.1126/science.265.5176.1212.
  6. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  7. Al-Maliki, A.F.H., Ahmed, R.A., Moustafa, N.M. and Faleh, N.M. (2020), "Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams", Adv. Comput. Des., 5(2), 177-193. https://doi.org/10.12989/acd.2020.5.2.177.
  8. Al-Osta, M.A. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. https://doi.org/10.12989/cac.2019.24.1.037.
  9. Anil, K.L., Panda, S.K., Sharma, N., Hirwani, C.K. and Topal, U. (2020), "Optimal fiber volume fraction prediction of layered composite using frequency constraints-A hybrid FEM approach", Comput. Concrete, 25(4), 303-310. http://dx.doi.org/10.12989/cac.2020.25.4.303.
  10. Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.
  11. Asadi, H., Souri, M. and Wang, Q. (2017), "A numerical study on flow-induced instabilities of supersonic FG-CNT reinforced composite flat panels in thermal environments", Compos. Struct., 171, 113-125. https://doi.org/10.1016/j.compstruct.2017.02.003.
  12. Aslan, Z., Karakuzu, R. and Okutan, B. (2003), "The response of laminated composite plates under low-velocity impact loading", Compos. Struct., 59(1), 119-127. https://doi.org/10.1016/S0263-8223(02)00185-X.
  13. Avcar, M. (2016), "Free vibration of non-homogeneous beam subjected to axial force resting on pasternak foundation", J. Polytech.-Politeknik Dergisi., 19(4), 507-512. https://doi.org/10.2339/2016.19.4.507-512.
  14. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.
  15. Bakhshi, N. and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng., 1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
  16. Barati, M.R. (2019), "Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory", Struct. Eng. Mech., 64(6), 683-693. https://doi.org/10.12989/sem.2017.64.6.683.
  17. Barber, A.H., Cohen, S.R. and Wagner, H.D. (2003), "Measurement of carbon nanotube-polymer interfacial strength", Appl. Phys. Lett., 82, 4140-4152. https://doi.org/10.1063/1.1579568.
  18. Barouni, A.K. and Saravanos, D.A. (2016), "A layerwise semi-analytical method for modeling guided wave propagation in laminated and sandwich composite strips with induced surface excitation", Aerosp. Sci. Technol., 51, 118-141. https://doi.org/10.1016/j.ast.2016.01.023.
  19. Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2017.2.3.165.
  20. Cooper, C.A., Cohen, S.R., Barber, A.H. and Wagner, H.D. (2002), "Detachment of nanotubes from a polymer matrix", Appl. Phys. Lett., 81, 3873-3885. https://doi.org/10.1063/1.1521585.
  21. Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.
  22. Dewangan, H.C., Sharma, N., Hirwani, C.K. and Panda, S.K. (2020), "Numerical eigenfrequency and experimental verification of variable cutout (square/rectangular) borne layered glass/epoxy flat/curved panel structure", Mech. Bas. Des. Struct. Mach., 3(2), 165-190. https://doi.org/10.1080/15397734.2020.1759432.
  23. Dihaj, A., Zidour, M., Meradjah, M., Rakrak, K., Heireche, H. and Chemi, A. (2018), "Free vibration analysis of chiral double-walled carbon nanotube embedded in an elastic medium using non-local elasticity theory and Euler Bernoulli beam model", Struct. Eng. Mech., 65(3), 335-342. https://doi.org/10.12989/sem.2018.65.3.335.
  24. Duc, N.D., Cong, P.H., Tuan, N.D., Tran, P. and Van Thanh, N. (2017), "Thermal and mechanical stability of functionally graded carbon nanotubes (FG CNT)-reinforced composite truncated conical shells surrounded by the elastic foundations", Thin Wall. Struct., 115, 300-310. https://doi.org/10.1016/j.tws.2017.02.016.
  25. Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.
  26. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28, 2394-401. https://doi.org/10.1016/j.matdes.2006.09.022.
  27. Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.
  28. Ghannadpour, S.A.M. and Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
  29. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
  30. Hamed, M.A., Mohamed, S.A. and Eltaher, M.A. (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
  31. Hamidi, A., Zidour, M., Bouakkaz, K. and Bensattalah, T. (2018), "Thermal and small-scale effects on vibration of embedded armchair single-walled carbon nanotubes", J. Nano Res., 51, 24-38. https://doi.org/10.4028/www.scientific.net/JNanoR.51.24.
  32. Hanson, G.W. (2005), "Fundamental transmitting properties of carbon nanotube antennas", IEEE Tran. Anten. Propagat., 53(11), 3426-3435. https://doi.org/10.1109/TAP.2005.858865.
  33. Hirwani, C.K. and Panda, S.K. (2019), "Nonlinear finite element solutions of thermoelastic deflection and stress responses of internally damaged curved panel structure", Appl. Math. Model., 65, 303-317. https://doi.org/10.1016/j.apm.2018.08.014.
  34. Hone, J., Llaguno, M.C., Nemes, N.M., Johnson, A.T., Fischer, J.E., Walters, D.A. and Smalley, R.E. (2000), "Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films", Appl. Phys. Lett., 77(5), 666-668. https://doi.org/10.1063/1.127079.
  35. Jeyaraj, P. and Rajkumar, I. (2013), "Static behavior of FG-CNT polymer nano composite plate under elevated non-uniform temperature fields", Procedia Eng., 64, 825-834. https://doi.org/10.1016/j.proeng.2013.09.158.
  36. Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., 19(4), 1011-1033. http://dx.doi.org/10.12989/scs.2015.19.4.1011.
  37. Katariya, P.V. and Panda, S.K. (2019a), "Frequency and deflection responses of shear deformable Skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44, 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  38. Katariya, P.V. and Panda, S.K. (2019b), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. http://dx.doi.org/10.12989/sem.2019.71.6.657.
  39. Katariya, P.V., Mehar, K. and Panda, S.K. (2020), "Nonlinear dynamic responses of layered skew sandwich composite structure and experimental validation", Int. J. Nonlin. Mech., 103527. https://doi.org/10.1016/j.ijnonlinmec.2020.103527.
  40. Katariya, P.V., Panda, S.K. and Mahapatra, T.R. (2018), "Bending and vibration analysis of skew sandwich plate", Aircraft Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087.
  41. Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.
  42. Keleshteri, M.M., Asadi, H. and Wang, Q. (2017), "Large amplitude vibration of FG-CNT reinforced composite annular plates with integrated piezoelectric layers on elastic foundation", Thin Wall. Struct., 120, 203-214. https://doi.org/10.1016/j.tws.2017.08.035.
  43. Kiani, Y. (2016), "Shear buckling of FG-CNT reinforced composite plates using Chebyshev-Ritz method", Compos. Part B: Eng., 105, 176-187. https://doi.org/10.1016/j.compositesb.2016.09.001.
  44. Kiani, Y. (2017a), "Dynamics of FG-CNT reinforced composite cylindrical panel subjected to moving load", Thin Wall. Struct., 111, 48-57. https://doi.org/10.1016/j.tws.2016.11.011.
  45. Kiani, Y. (2017b), "Free vibration of carbon nanotube reinforced composite plate on point supports using Lagrangian multipliers", Meccanica., 52(6), 1353-1367. https://doi.org/10.1007/s11012-016-0466-3.
  46. Kiani, Y. (2017c), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Therm. Stress., 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.
  47. Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Therm. Stress., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.
  48. Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006.
  49. Kunche, M.C., Mishra, P.K., Nallala, H.B., Hirwani, C.K., Katariya, P.V., Panda, S. and Panda, S.K. (2019), "Theoretical and experimental modal responses of adhesive bonded T-joints", Wind Struct., 29(5), 361-369. http://dx.doi.org/10.12989/was.2019.29.5.361.
  50. Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.
  51. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method", Compos. Struct., 127, 245-259. https://doi.org/10.1016/j.compstruct.2015.03.019.
  52. Li, H., Tu, S., Liu, Y., Lu, X. and Zhu, X. (2019), "Mechanical properties of L-joint with composite sandwich structure", Compos. Struct., 217, 165-174. https://doi.org/10.1016/j.compstruct.2019.03.011.
  53. Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.
  54. Mahapatra, T.R., Mehar, K., Panda, S.K., Dewangan, S. and Dash, S. (2017), "Flexural strength of functionally graded nanotube reinforced sandwich spherical panel", IOP Conf. Ser.: Mater. Sci. Eng., 178(1), 012031. https://doi.org/10.1088/1757-899X/178/1/012031.
  55. Mehar, K. and Panda, S.K. (2017a), "Thermoelastic analysis of FG-CNT reinforced shear deformable composite plate under various loading", Int. J. Comput. Meth., 14(2), 1750019. https://doi.org/10.1142/S0219876217500190.
  56. Mehar, K. and Panda, S.K. (2017b), "Nonlinear static behavior of FG-CNT reinforced composite flat panel under thermomechanical load", J. Aerosp. Eng., 30(3), 04016100. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000706.
  57. Mehar, K. and Panda, S.K. (2018a), "Thermoelastic flexural analysis of FG-CNT doubly curved shell panel", Aircraft Eng. Aerosp. Technol., 90(1), 11-23. https://doi.org/10.1108/AEAT-11-2015-0237.
  58. Mehar, K. and Panda, S.K. (2018b), "Elastic bending and stress analysis of carbon nanotube-reinforced composite plate: Experimental, numerical, and simulation", Adv. Polym. Technol., 37(6), 1643-1657. https://doi.org/10.1002/adv.21821.
  59. Mehar, K. and Panda, S.K. (2020), "Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading", Acta Mech., 231, 1105-1123. https://doi.org/10.1007/s00707-019-02579-5.
  60. Mehar, K., Mishra, P.K. and Panda, S.K. (2020a), "Numerical investigation of thermal frequency responses of graded hybrid smart nanocomposite (CNT-SMA-Epoxy) structure", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2020.1725193.
  61. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  62. Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  63. Mehar, K., Panda, S.K. and Sharma, N. (2020b), "Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure", Eng. Struct., 211, 110444. https://doi.org/10.1016/j.engstruct.2020.110444.
  64. Merzoug, M., Bourada, M., Sekkal, M., Abir, A.C., Chahrazed, B., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. http://dx.doi.org/10.12989/gae.2020.22.4.361.
  65. Mirjavadi, S.S., Forsat, M., Barati, M.R., Abdella, G.M., Mohasel Afshari, B., Hamouda, A.M.S. and Rabby, S. (2019). "Dynamic response of metal foam FG porous cylindrical micro-shells due to moving loads with strain gradient size-dependency", Eur. Phys. J. Plus, 134(5), 1-11. https://doi.org/10.1140/epjp/i2019-12540-3.
  66. Mirzaei, M. and Kiani, Y. (2016), "Thermal buckling of temperature dependent FG-CNT reinforced composite plates", Meccanica. 51(9), 2185-2201. https://doi.org/10.1007/s11012-015-0348-0.
  67. Mohammadzadeh-Keleshteri, M., Asadi, H. and Aghdam, M.M. (2017), "Geometrical nonlinear free vibration responses of FG-CNT reinforced composite annular sector plates integrated with piezoelectric layers", Compos. Struct., 171, 100-112. https://doi.org/10.1016/j.compstruct.2017.01.048.
  68. Monge, J.C., Mantari, J.L., Yarasca, J. and Arciniega, R.A. (2019), "On bending response of doubly curved laminated composite shells using hybrid refined models", J. Appl. Comput. Mech., 5(5), 875-899. https://doi.org/10.22055/jacm.2019.27297.1397.
  69. Narwariya, M., Choudhury, A. and Sharma, A.K. (2018), "Harmonic analysis of moderately thick symmetric cross-ply laminated composite plate using FEM", Adv. Comput. Des., 3(2), 113-132. https://doi.org/10.12989/acd.2018.3.2.113.
  70. Nebab, M., Ait Atmane, H., Bennai, R. and Tahar, B. (2019), "Effect of nonlinear elastic foundations on dynamic behavior of FG plates using four-unknown plate theory", Earthq. Struct., 17(5), 447-462. https://doi.org/10.12989/eas.2019.17.5.447.
  71. Nejadi, M.M. and Mohammadimehr, M. (2020), "Analysis of a functionally graded nanocomposite sandwich beam considering porosity distribution on variable elastic foundation using DQM: Buckling and vibration behaviors", Comput. Concrete, 25(3), 215-224. https://doi.org/10.12989/cac.2020.25.3.215.
  72. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modelling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
  73. Othman, M. and Fekry, M. (2018), "Effect of rotation and gravity on generalized thermo-viscoelastic medium with voids", Multidisc. Model. Mater. Struct., 14(2), 322-338. https://doi.org/10.1108/MMMS-08-2017-0082.
  74. Panda, S.K. and Katariya, P.V. (2015), "Stability and Free Vibration Behaviour of Laminated Composite Panels Under Thermo-mechanical Loading", Int. J. Appl. Comput. Math., 1, 475-490. https://doi.org/10.1007/s40819-015-0035-9.
  75. Panda, S.K. and Singh, B.N. (2010), "Thermal post-buckling analysis of a laminated composite spherical shell panel embedded with shape memory alloy fibres using non-linear finite element method", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 224(4), 757-769. https://doi.org/10.1243/09544062JMES1809.
  76. Pandey, H.K., Agrawal, H., Panda, S.K., Hirwani, C.K., Katariya, P.V. and Dewangan, H.C. (2020), "Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite", Struct. Eng. Mech., 73(6), 715-724. http://dx.doi.org/10.12989/sem.2020.73.6.715.
  77. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. http://dx.doi.org/10.12989/anr.2019.7.6.419.
  78. Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-art", Trend. Civil Eng. Arch., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
  79. Patnaik, S.S., Swain, A. and Roy, T. (2020), "Creep compliance and micromechanics of multi-walled carbon nanotubes based hybrid composites", Compos. Mater. Eng., 2(2), 141-152. https://doi.org/10.12989/cme.2020.2.2.141.
  80. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://dx.doi.org/10.12989/gae.2020.22.1.065.
  81. Rahmani, M., Mohammadi, Y., Kakavand, F. and Raeisifard, H. (2020), "Vibration analysis of different types of porous FG conical sandwich shells in various thermal surroundings", J. Appl. Comput. Mech., 6(3), 416-432. https://doi.org/10.22055/jacm.2019.29442.1598.
  82. Ranjbartoreh, A.R., Ghorbanpour, A. and Soltani, B. (2007), "Double-walled carbon nanotube with surrounding elastic medium under axial pressure", Physica E: Lowdimens. Syst. Nanostruct., 39(2), 230-239. https://doi.org/10.1016/j.physe.2007.04.010.
  83. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd Edition, CRC Press, Taylor & Francis eBooks.
  84. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.
  85. Safa, A., Hadji, L., Bourada, M. and Zouatnia, N. (2019), "Thermal vibration analysis of FGM beams using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
  86. Sahmani, S. and Fattahi, A.M. (2017), "Nonlocal size dependency in nonlinear instability of axially loaded exponential shear deformable FG-CNT reinforced nanoshells under heat conduction", Eur. Phys. J. Plus, 132(5), 231. https://doi.org/10.1140/epjp/i2017-11497-5.
  87. Sahoo, S.S., Panda, S.K. and Singh, V.K. (2017), "Experimental and numerical investigation of static and free vibration responses of woven glass/epoxy laminated composite plate", Proc. Inst. Mech. Eng., Part L: J. Mater. Des., 231(5), 463-478. https://doi.org/10.1177/1464420715600191.
  88. Sahoo, S.S., Singh, V.K. and Panda, S.K. (2016), "Nonlinear flexural analysis of shallow carbon/epoxy laminated composite curved panels: experimental and numerical investigation", J. Eng. Mech., 142(4), 04016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001040.
  89. Sahouane, A., Hadji, L. and Bourada, M. (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
  90. Sahu, P., Sharma, N. and Panda, S.K. (2020), "Numerical prediction and experimental validation of free vibration responses of hybrid composite (Glass/Carbon/Kevlar) curved panel structure", Compos. Struct., 241, 112073. https://doi.org/10.1016/j.compstruct.2020.112073.
  91. Sayyad, A. and Ghumare, S. (2019), "A new Quasi-3D model for functionally graded plates", J. Appl. Comput. Mech., 5(2), 367-380. https://doi.org/10.22055/jacm.2018.26739.1353.
  92. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
  93. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube reinforced composite plates in thermal environments", Compos Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.
  94. Shokravi, M. (2017), "Buckling of sandwich plates with FG CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory", Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/scs.2017.23.6.623.
  95. Shokrieh, M.M. and Kondori, M.S. (2020), "Effects of adding graphene nanoparticles in decreasing of residual stresses of carbon/epoxy laminated composites", Compos. Mater. Eng., 2(1), 53-64. https://doi.org/10.12989/cme.2020.2.1.053.
  96. Verma, K.L. (2013), "Wave propagation in laminated composite plates", Int. J. Adv. Struct. Eng., 5(1), 10. https://doi.org/10.1186/2008-6695-5-10.
  97. Vodenitcharova, T. and Zhang, L.C. (2006), "Bending and local buckling of a nanocomposite beam reinforced by a single-walled carbon nanotube", Int. J. Solid. Struct., 43, 3006-3024. https://doi.org/10.1016/j.ijsolstr.2005.05.014.
  98. Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Model., 39(18), 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058.
  99. Xie, S., Li, W., Pan, Z., Chang, B. and Sun, L. (2000), "Mechanical and physical properties on carbon nanotube", J. Phys. Chem. Solid., 61(7), 1153-1158. https://doi.org/10.1016/S0022-3697(99)00376-5.
  100. Zhang, L.W., Lei, Z.X. and Liew, K.M. (2015), "Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach", Compos. Part B: Eng., 75, 36-46. https://doi.org/10.1016/j.compositesb.2015.01.033.
  101. Zhu, P., Lei, Z.X. and Liew, K.M. (2012), "Static and free vibration analyses of carbon nanotube reinforced composite plates using finite element method with first order shear deformation plate theory", Compos. Struct., 94, 1450-1460. https://doi.org/10.1016/j.compstruct.2011.11.010.

Cited by

  1. New Treatment of the Rotary Motion of a Rigid Body with Estimated Natural Frequency vol.2020, 2020, https://doi.org/10.1155/2020/6629183
  2. Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, 2020, https://doi.org/10.1155/2020/8831366
  3. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/6672370
  4. Analytical Solution of Composite Curved I-Beam considering Tangential Slip under Uniform Distributed Load vol.2021, 2020, https://doi.org/10.1155/2021/4094753
  5. Free Vibration Investigations of Rotating FG Beams Resting on Elastic Foundation with Initial Geometrical Imperfection in Thermal Environments vol.2021, 2020, https://doi.org/10.1155/2021/5533920
  6. Study on the Dynamic Performance of Locally Resonant Plates with Elastic Unit Cell Edges vol.2021, 2021, https://doi.org/10.1155/2021/5541052
  7. A Refined Model for Analysis of Beams on Two-Parameter Foundations by Iterative Method vol.2021, 2021, https://doi.org/10.1155/2021/5562212
  8. Analysis of the Vibration of the Ground Surface by Using the Layered Soil: Viscoelastic Euler Beam Model due to the Moving Load vol.2021, 2020, https://doi.org/10.1155/2021/6619197
  9. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  10. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  11. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  12. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
  13. A numerical solution to thermo‐mechanical behavior of temperature dependent rotating functionally graded annulus disks vol.93, pp.4, 2020, https://doi.org/10.1108/aeat-01-2021-0012
  14. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches vol.11, pp.2, 2021, https://doi.org/10.12989/anr.2021.11.2.157