DOI QR코드

DOI QR Code

Probabilistic bearing capacity of strip footing on reinforced anisotropic soil slope

  • Halder, Koushik (Department of Civil Engineering, Indian Institute of Technology Kharagpur) ;
  • Chakraborty, Debarghya (Department of Civil Engineering, Indian Institute of Technology Kharagpur)
  • Received : 2019.04.26
  • Accepted : 2020.08.26
  • Published : 2020.10.10

Abstract

The probabilistic bearing capacity of a strip footing placed on the edge of a purely cohesive reinforced soil slope is computed by combining lower bound finite element limit analysis technique with random field method and Monte Carlo simulation technique. To simulate actual field condition, anisotropic random field model of undrained soil shear strength is generated by using the Cholesky-Decomposition method. With the inclusion of a single layer of reinforcement, dimensionless bearing capacity factor, N always increases in both deterministic and probabilistic analysis. As the coefficient of variation of the undrained soil shear strength increases, the mean N value in both unreinforced and reinforced slopes reduces for particular values of correlation length in horizontal and vertical directions. For smaller correlation lengths, the mean N value of unreinforced and reinforced slopes is always lower than the deterministic solutions. However, with the increment in the correlation lengths, this difference reduces and at a higher correlation length, both the deterministic and probabilistic mean values become almost equal. Providing reinforcement under footing subjected to eccentric load is found to be an efficient solution. However, both the deterministic and probabilistic bearing capacity for unreinforced and reinforced slopes reduces with the consideration of loading eccentricity.

Keywords

Acknowledgement

The authors gratefully acknowledge the Department of Science and Technology, Government of India for their financial support vide Science and Engineering Research Board (SERB) research project grant number DST No: SB/FTP/ETA-0061/2014 dated 17/07/2014.

References

  1. Abd, A.H. and Utili, S. (2017), "Design of geosynthetic-reinforced slopes in cohesive backfills", Geotext. Geomembr., 45(6), 627-641. https://doi.org/10.1016/j.geotexmem.2017.08.004.
  2. Brahmi, N., Ouahab, M.Y., Mabrouki, A., Benmeddour, D. and Mellas, M. (2018), "Probabilistic analysis of the bearing capacity of inclined loaded strip footings near cohesive slopes", Int. J. Geotech. Eng., 1-8. https://doi.org/10.1080/19386362.2018.1496005.
  3. Chakraborty, D. and Kumar, J. (2014), "Bearing capacity of strip foundations in reinforced soils", Int. J. Geomech., 14(1), 45-58. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000275.
  4. Chen, Y., Gao, Y., Yang, S. and Zhang, F. (2018), "Required unfactored geosynthetic strength of three-dimensional reinforced soil structures comprised of cohesive backfills", Geotext. Geomembr., 46(6), 860-868. https://doi.org/10.1016/j.geotexmem.2018.08.004.
  5. Das, B.M., Shin, E.C. and Omar, M.T. (1994), "The bearing capacity of surface strip foundations on geogrid-reinforced sand and clay-a comparative study", Geotech. Geol. Eng., 12(1), 1-14. https://doi.org/10.1007/BF00425933.
  6. Ghanbari, A., Khalilpasha, A., Sabermahani, M. and Heydari, B. (2013), "An analytical technique for estimation of seismic displacements in reinforced slopes based on horizontal slices method (HSM)", Geomech. Eng., 5(2), 143-164. http://doi.org/10.12989/gae.2013.5.2.143.
  7. Griffiths, D.V., Fenton, G.A. and Manoharan, N. (2002), "Bearing capacity of rough rigid strip footing on cohesive soil: Probabilistic study", J. Geotech. Geoenviron. Eng., 128(9), 743-755. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743).
  8. Haldar, A. and Mahadevan, S. (2000), Probability, Reliability, and Statistical Methods in Engineering Design, Wiley, New York, U.S.A.
  9. Halder, K. and Chakraborty, D. (2018), "Bearing capacity of strip footing placed on the reinforced soil slope", Int. J. Geomech., 18(11), 06018025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001278.
  10. Halder, K. and Chakraborty, D. (2019a), "Effect of interface friction angle between soil and reinforcement on bearing capacity of strip footing placed on reinforced slope", Int. J. Geomech., 19(5), 06019008. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001394 .
  11. Halder, K. and Chakraborty, D. (2019b), "Seismic bearing capacity of strip footing placed on the reinforced slope", Geosynth. Int., 26(5), 474-484. https://doi.org/10.1680/jgein.19.00032.
  12. Halder, K. and Chakraborty, D. (2019c), "Probabilistic bearing capacity of strip footing on reinforced soil slope", Comput. Geotech., 116, 1-11. https://doi.org/10.1016/j.compgeo.2019.103213.
  13. Halder, K. and Chakraborty, D. (2020), "Influence of soil spatial variability on the response of strip footing on geocell reinforced slope", Comput. Geotech., 122, 1-13. https://doi.org/10.1016/j.compgeo.2020.103533.
  14. Halder, K., Chakraborty, D. and Dash, S.K. (2019), "Bearing capacity of a strip footing situated on soil slope using a non-associated flow rule in lower bound limit analysis", Int. J. Geotech. Eng., 13(2), 103-111. https://doi.org/10.1080/19386362.2017.1325119.
  15. Huang, C. and Tatsuoka, F. (1994), "Stability analysis for footings on reinforced sand slopes", Soils Found., 34(3), 21-37. https://doi.org/10.3208/sandf1972.34.3_21.
  16. ITASCA, FLAC 2D Version 7.0.411 (2011), Fast Lagrangian Analysis of Continua in 2 Dimensions, ITASCA Consulting Group Inc.
  17. Keskin, M.S. and Laman, M. (2014), "Experimental study of bearing capacity of strip footing on sand slope reinforced with tire chips", Geomech. Eng., 6(3), 249-262. http://doi.org/10.12989/gae.2014.6.3.249.
  18. Lee, K.M. and Manjunath, V.R. (2000), "Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing", Can. Geotech. J., 37(4), 828-842. https://doi.org/10.1139/t00-016.
  19. Lombardi, M., Cardarilli, M. and Raspa, G. (2017), "Spatial variability analysis of soil strength to slope stability assessment", Geomech. Eng., 12(3), 483-503. https://doi.org/10.12989/gae.2017.12.3.483.
  20. Luo, N. and Bathurst, R.J. (2017), "Reliability bearing capacity analysis of footings on cohesive soil slopes using RFEM", Comput. Geotech., 89, 203-212. https://doi.org/10.1016/j.compgeo.2017.04.013.
  21. Luo, N. and Bathurst, R.J. (2018), "Deterministic and random FEM analysis of full-scale unreinforced and reinforced embankments", Geosynth. Int., 25(2), 164-179. https://doi.org/10.1680/jgein.17.00040.
  22. Makrodimopoulos, A. and Martin, C.M. (2006), "Lower bound limit analysis of cohesive-frictional materials using second-order cone programming", Int. J. Numer. Meth. Eng., 66(4), 604-634. https://doi.org/10.1002/nme.1567.
  23. MATLAB R2015a (2015), [Computer software]. Natick, MA, MathWorks.
  24. MOSEK ApS version 9.0 (n.d.) [Computer software]. MOSEK, Copenhagen, Denmark.
  25. Noorzad, R. and Mirmoradi, S.H. (2010), "Laboratory evaluation of the behavior of a geotextile reinforced clay", Geotext. Geomembr., 28(4), 386-392. https://doi.org/10.1016/j.geotexmem.2009.12.002.
  26. Phoon, K.K. and Kulhawy, F.H. (1999a), "Characterization of Geotechnical Variability", Can. Geotech. J., 36(4), 612-624. https://doi.org/10.1139/t99-038.
  27. Phoon, K.K. and Kulhawy, F.H. (1999b), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/t99-039.
  28. Pramanik, R., Baidya, D.K. and Dhang, N. (2019), "Implementation of fuzzy reliability analysis for elastic settlement of strip footing on sand considering spatial variability", Int. J. Geomech., 19(12), 04019126. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001514.
  29. Selvadurai, A.P.S. and Gnanendran, C.T. (1989), "An experimental study of a footing located on a sloped fill: Influence of a soil reinforcement layer", Can. Geotech. J., 26(3), 467-473. https://doi.org/10.1139/t89-059.
  30. Shin, E.C., Das, B.M., Puri, V.K., Yen, S.C. and Cook, E.E. (1993), "Bearing capacity of strip foundation on geogrid-reinforced clay", Geotech. Test. J., 16(4), 534-541. https://doi.org/10.1016/0266-1144(94)90066-3.
  31. Sloan, S.W. (1988), "Lower bound limit analysis using finite elements and linear programming", Int. J. Numer. Anal. Meth. Geomech., 12(1), 61-77. https://doi.org/10.1002/nag.1610120105.
  32. Srivastava, A. and Sivakumar Babu, G.S. (2011), "Deflection and buckling of buried flexible pipe-soil system in a spatially variable soil profile", Geomech. Eng., 3(3), 169-188. https://doi.org/10.12989/gae.2011.3.3.169.
  33. Tang, C., Phoon, K.K. and Toh, K.C. (2014), "Lower-bound limit analysis of seismic passive earth pressure on rigid walls", Int. J. Geomech., 14(5), 04014022. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000385.
  34. Turker, E., Sadoglu, E., Cure, E. and Uzuner, B.A. (2014), "Bearing capacity of eccentrically loaded strip footings close to geotextile-reinforced sand slope", Can. Geotech. J., 51(8), 884-895. https://doi.org/10.1139/cgj-2014-0055.
  35. Vahedifard, F., Leshchinsky, B.A., Sehat, S. and Leshchinsky, D. (2014), "Impact of cohesionon seismic design of geosynthetic-reinforced earth structure", J. Geotech. Geoenviron. Eng., 140(6), 04014016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001099.
  36. Wang, L., Zhang, G. and Zhang, J.M. (2011), "Centrifuge model tests of geotextile-reinforced soil embankments during an earthquake", Geotext. Geomembr., 29(3), 222-232. https://doi.org/10.1016/j.geotexmem.2010.11.002.
  37. Yang, S., Leshchinsky, B., Cui, K., Zhang, F. and Gao, Y. (2019), "Unified approach toward evaluating bearing capacity of shallow foundations near slope", J. Geotech. Geoenviron. Eng., 145(12), 04019110. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002178.
  38. Yang, S., Leshchinsky, B., Cui, K., Zhang, F. and Gao, Y. (2020), "Influence of failure mechanism on seismic bearing capacity factors for shallow foundations near slopes", Geotechnique, 1-46. http://doi.org/10.1680/jgeot.19.P.329.
  39. Yoo, C. (2001), "Laboratory investigation of bearing capacity behaviour of strip footing on geogrid-reinforced sand slope", Geotext. Geomembr., 19(5), 279-298. https://doi.org/10.1016/S0266-1144(01)00009-7.
  40. Yoo, C. (2016), "Effect of spatial characteristics of a weak zone on tunnel deformation behavior", Geomech. Eng., 11(1), 41-58. http://dx.doi.org/10.12989/gae.2016.11.1.041.
  41. Zheng, Y. and Fox, P.J. (2017), "Numerical investigation of the geosynthetic reinforced soil-integrated bridge system under static loading", J. Geotech. Geoenviron. Eng., 143(6), 04017008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001665.
  42. Zheng, Y., Fox, P.J., Shing, P.B. and McCartney, J.S. (2019), "Physical model tests of half-scale geosynthetic reinforced soil bridge abutments. I: Static loading", J. Geotech. Geoenviron. Eng., 145(11), 04019094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002152.
  43. Zheng, Y., McCartney, J.S. and Fox, P.J. (2018), "Numerical study on maximum reinforcement tensile forces in geosynthetic reinforced soil bridge abutments", Geotext. Geomembr., 46(5), 634-645. https://doi.org/10.1016/j.geotexmem.2018.04.007.

Cited by

  1. Pullout Capacity Factor for Cylindrical Suction Caissons in Anisotropic Clays Based on Anisotropic Undrained Shear Failure Criterion vol.8, pp.4, 2020, https://doi.org/10.1007/s40515-021-00154-x