DOI QR코드

DOI QR Code

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu (Korea Research Institute of Science and Standards)
  • Received : 2020.09.15
  • Accepted : 2020.10.28
  • Published : 2020.12.31

Abstract

Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

Keywords

Acknowledgement

The author thanks Mr. Hoffmann Henrik at Kramer Scientific Instruments for his kind advice.

References

  1. P. Anastasiadis, P.V. Zinin, High-frequency time-resolved scanning acoustic microscopy for biomedical applications. Open Neuroimaging J. 12, 69-85 (2018). https://doi.org/10.2174/1874440001812010069
  2. F. Bertocci, A. Grandoni, T. Djuric-Rissner, Scanning acoustic microscopy (SAM): A robust method for defect detection during the manufacturing process of ultrasound probes for medical imaging. Sensors 19, 4868-4886 (2019). https://doi.org/10.3390/s19224868
  3. B. Bilen, L.T. Sener, I. Albeniz, M. Sezen, M.B. Unlu, M. Ugurlucan, Determination of ultrastructural properties of human carotid atherosclerotic plaques by scanning acoustic microscopy, micro-computer tomography, scanning electron microscopy and energy dispersive X-ray spectroscopy. Sci. Rep. 9(679), 1-10 (2019b). https://doi.org/10.1038/s41598-018-37480-z
  4. B.T. Bilen, M. Parlak, M.B. Unlu, Scanning acoustic microscopy of quantum dot aggregates. Biomed. Phys. Eng. Express 5, 065025 (2019a). https://doi.org/10.1088/2057-1976/ab519a
  5. S. Brand, A. Lapadatu, T. Djuric, P. Czurratis, J. Schischka, M. Petzold, Scanning acoustic gigahertz microscopy for metrology applications in threedimensional integration technologies. J. Micro/Nanolith 13(1), 011207-1-011207-9 (2014). https://doi.org/10.1117/1.JMM.13.1.011207 MEMS MOEMS
  6. S. Cruz, A. Sousa, J.C. Viana, T. Martins, Analysis of the bonding process and materials optimization for mitigating the yellow border defect on optically bonded automotivedisplay panels. Displays 48, 21-28 (2017). https://doi.org/10.1016/j.displa.2017.02.003
  7. I. Demirkana, M.B. Unlu, B. Bilen, Determining sodium diffusion through acoustic impedance measurements using 80 MHz scanning acoustic microscopy: Agarose phantom verification. Ultrasonics 94, 10-19 (2019). https://doi.org/10.1016/j.ultras.2018.12.013
  8. A.S. Dukhin, P.J. Goetz, Ch. 3 - Fundamentals of Acoustics in Homogeneous Liquids. Longitudinal Rheology 24, 91-125 (2010). https://doi.org/10.1016/S1383-7303(10)23003-X
  9. N. Hozumia, S. Yoshidab, K. Kobayashi, Three-dimensional acoustic impedance mapping of cultured biological cells. Ultrasonics 99, 105966-1-105966-4 (2019). https://doi.org/10.1016/j.ultras.2019.105966
  10. J. Kim, J. Mamou, D. Kouame, A. Achim, A. Basarab, in IEEE International Ultrasonics Symposium. Spatio-temporal compressed quantitative acoustic microscopy (2019). https://doi.org/10.1109/ULTSYM.2019.8925562
  11. A. Kubit, T. Trzepiecinski, K. Faes, M. Drabczyk, W. Bochnowski, M. Korzeniowski, Analysis of the effect of structural defects on the fatigue strength of RFSSW joints using C-scan scanning acoustic microscopy and SEM. Fatigue Fract. Eng. Mater. Struct. 42(6), 1308-1321 (2019). https://doi.org/10.1111/ffe.12984
  12. A.I. Kustov, I.A. Miguel, Development of methods of acoustic microscopy inspection for monitoring of structure and properties of coatings for various purposes. Mater. Today Proc. 11, 203-211 (2019). https://doi.org/10.1016/j.matpr.2018.12.132
  13. H. Liang, K. Lu, X. Liu, J. Xue, The auto-focus method for scanning acoustic microscopy by sparse representation. Sens. Imaging 20, 33-48 (2019). https://doi.org/10.1007/s11220-019-0255-x
  14. R. Gr. Maev, Acoustic Microscopy: Fundamentals and Applications Wiley-VCH Verlag, pp. 1-20 (2008). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527623136
  15. R. Gr. Maev, Advances in Acoustic Microscopy and High Resolution Imaging: From Principles to Applications Wiley-VCH Verlag, pp. 1-21 (2013). https://onlinelibrary.wiley.com/doi/book/10.1002/9783527655304
  16. R.Gr. Maev, Acoustic microscopy for materials characterization Materials Characterization Using Nondestructive Evaluation (NDE) Woodhead Publishing, pp. 161-176 (2016). https://doi.org/10.1016/B978-0-08-100040-3.00006-7
  17. E.S. Morokov, V.M. Levin, Spatial resolution of acoustic microscopy in the visualization of interfaces inside a solid. Acoust. Phys. 65, 165-170 (2019). https://doi.org/10.1134/S106377101902009X
  18. H. Park, S.T. Lee, Analyzing acoustic characteristics of multi-channel speaker directly driving flat panel display: Considering the acoustic stereo effects. Soc. Inf. Display 50(1), 1634-1636 (2019). https://doi.org/10.1002/sdtp.13262
  19. Y. Qiu, S. Zhang, in IEEE 2017 Prognostics and System Health Management Conference. Study on the pin delamination of plastic encapsulated microcircuits using scanning acoustic microscope (2017), pp. 1-5. https://doi.org/10.1109/PHM.2017.8079308
  20. Y. Qiu, S. Zhang, Z.P. Chen, Y. Li, M. Jiang, Counterfeit identification method of plastic encapsulated microcircuits using scanning acoustic microscope. J. Phys. Conf. Ser. 1074, 012102-1-012102-6 (2018). https://doi.org/10.1088/1742-6596/1074/1/012102
  21. Y. Saijo, Acoustic microscopy: Latest developments and applications. Imaging Med. Imaging Med. 1(1), 47-63 (2009) https://www.openaccessjournals.com/articles/acoustic-microscopy-latest-developments-and-applications-8192.html
  22. Y. Saijo, N. Hozumi, K. Kobayashi, N. Okada, T. Ishiguro, Y. Hagiwara, E.S. Filho, T. Yambe, in IEEE Engineering in Medicine and Biology Society, Lyon. Ultrasound Speed and Impedance Microscopy for in vivo Imaging (2007b), pp. 1350-1135. https://doi.org/10.1109/IEMBS.2007.4352548
  23. Y. Saijo, C.S. Jorgensen, P. Mondek, V. Sefranek, W. Paaske, Acoustic inhomogeneity of carotid arterial plaques determined by GHz frequency range acoustic microscopy. Ultrasound Med. Biol. 28(7), 933-937 (2002)
  24. Y. Saijo, F.E. Santos, H. Sasaki, T. Yambe, M. Tanaka, N. Hozumi, K. Kobayashi, N. Okada, Ultrasonic tissue characterization of atherosclerosis by a speed-of-sound microscanning system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(8), 1571-1577 (2007a). https://doi.org/10.1109/TUFFC.2007.427
  25. Y. Saijo, H. Sasaki, N. Hozumi, K. Kobayashi, M. Tanaka, T. Yambe, Sound speed scanning acoustic microscopy for biomedical applications. Technol. Health Care 13(4), 261-267 (2005). https://doi.org/10.3233/THC-2005-13405
  26. Y. Saijo, M. Tanaka, H. Okawai, H. Sasaki, S.-I. Nitta, F. Dunn, Ultrasonic tissue characterization of infarcted myocardium by scanning acoustic. Ultrasound Med. Biol. 23, 77-85 (1997). https://doi.org/10.1016/S0301-5629(96)00174-3
  27. F. Schubert, M. Barth, R. Hipp, B. Kohler, in Handbook of Advanced. Non-Destructive Evaluation 1. Acoustic Microscopy (Springer, 2018), pp. 1-40
  28. R. Shannon, G. Zucaro, J. Tallent, V. Collins, J. Carswell, A system for detecting failed electronics using acoustics. IEEE Instrum. Meas. Mag. 22(4), 32-37 (2019). https://doi.org/10.1109/MIM.2019.8782197
  29. C.J.R. Sheppard, Ch. 8 - Scanning optical microscopy. Adv. Imaging Electron Phys. 213, 227-325 (2020). https://doi.org/10.1016/bs.aiep.2019.11.001
  30. C. Song, L. Xi, H. Jiang, Acoustic lens with variable focal length for photoacoustic microscopy. J. Appl. Phys. 114, 194703-1-194703-5 (2013). https://doi.org/10.1063/1.4832757
  31. T. Takezaki, M. Kawano, S. Machida, D. Ryuzaki, Improvement in lateral resolution of through-transmission scanning acoustic tomography using capacitive micromachined ultrasound transducer. Microelectron. Reliab. 93, 22-28 (2019). https://doi.org/10.1016/j.microrel.2018.12.001
  32. K. Wang, X. Yan, Performance analysis of ethylene-propylene diene monomer sound-absorbing materials based on image processing recognition. EURASIP J. Image Video Process. 128, 1-10 (2018). https://doi.org/10.1186/s13640-018-0372-9
  33. Z. Wang, X. Liu, Z. He, L. Su, X. Lu, Intelligent detection of flip chip with the scanning acoustic microscopy and the general regression neural network. Microelectr. Eng. 217(15), 111127-1-111127-6 (2019). https://doi.org/10.1016/j.mee.2019.111127
  34. M. Wust, S.J. Rupitsch, 3-D Scanning Acoustic Microscope for Investigation of Curved-Structured Smart Material Compounds. Adv. Eng. Mater. 20, 1800409-1-1900409-8 (2018). https://doi.org/10.1002/adem.201800409
  35. X. Yang, C. Fei, D. Li, X. Sun, S. Hou, J. Chen, Y. Yang, Multi-layer polymer-metal structures for acoustic impedance matching in high-frequency broadband ultrasonic transducers design. Appl. Acoust. 160, 107123-1-107123-6 (2020). https://doi.org/10.1016/j.apacoust.2019.107123
  36. W. Yared, C.-Y. Chen, N. Sievers, W. Tillmann, R. Zielke, M. Schimpfermann, Void distribution in a brazed cemented carbide steel joint analyzed by X-ray microscopy. Measurement 141, 250-257 (2019). https://doi.org/10.1016/j.measurement.2019.04.045
  37. Y. Zhu, L. Wang, Y. Behnamian, S. Song, R. Wang, Z. Gao, W. Hu, D.-H. Xia, Metal pitting corrosion characterized by scanning acoustic microscopy and binary image processing. Corros. Sci. 170, 108685-1-108685-8 (2020). https://doi.org/10.1016/j.corsci.2020.108685
  38. Y. Zhu, C. Xu, D. Xiao, L. He, Microstructure size measurement based on C-scan image of scanning acoustic microscopy. Instrum. Meas. Metrologie 18(1), 63-68 (2019). https://doi.org/10.18280/i2m.180110