DOI QR코드

DOI QR Code

Comparison of the biological activity of extracts from the mycelium, sclerotium, and fruiting body of Wolfiporia cocos (F.A. Wolf) Ryvarden & Gilb using different extraction solvents

복령균핵, 균사체 및 자실체의 추출용매별 생리활성 성분 비교

  • An, Gi-Hong (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Cho, Jae-Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Kim, Ok-Tae (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Chan-Jung (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Han, Jae-Gu (Mushroom Research Division, National Institute of Horticultural and Herbal Science, RDA)
  • 안기홍 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 조재한 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 김옥태 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 이찬중 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과) ;
  • 한재구 (농촌진흥청 국립원예특작과학원 인삼특작부 버섯과)
  • Received : 2020.08.27
  • Accepted : 2020.09.22
  • Published : 2020.09.30

Abstract

The aim of this study was to investigate the biological activity of extracts obtained from the mycelium, sclerotium, and fruiting body of Wolfiporia cocos using different extraction solvents (hot water, 70% ethanol, and 70% methanol). Among the three developmental stages, the mycelium extracts showed the highest DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, ferric reducing antioxidant power (FRAP), nitrite scavenging activity, and total polyphenolic content. Among the extraction solvents in the context of the W. cocos mycelium, the DPPH radical scavenging activity, FRAP, and total polyphenol content in the hot-water extracts were significantly higher than those in the other extracts. In the case of the sclerotium, the reducing power, nitrite scavenging activity, and total polyphenol content were significantly higher in 70% ethanolic extracts. The fruiting body showed the highest DPPH radical scavenging activity, reducing power, nitrite scavenging activity, and total polyphenol content in the context of hot-water extraction. Moreover, the β-glucan content was significantly higher in the sclerotium versus the mycelium or fruiting body. The total amino acid and total essential amino acid contents were remarkably higher in the mycelium and fruiting body than in the sclerotium; of note, and arginine (Arg) and phenylalanine (Phe) were highly detected among the amino acid components.

복령 발달단계인 균사체(mycelium), 균핵(sclerotium) 및 자실체(fruiting body)에 대한 열수(hot-water), 70% 주정(70% EtOH) 및 70% 메탄올(70% MeOH) 용매별 생리활성 성분과 발달단계별 건조시료의 베타글루칸 및 아미노산 성분함량을 분석하였다. 그 결과, 발달단계별 시료 중에서 균사체의 DPPH 라디컬 소거능, 철 환원 항산화능, 환원력, 아질산염 소거능 및 총 폴리페놀 함량이 균핵과 자실체와 비교하여 유의적 차이를 보이며 높은 것으로 나타났다. 추출용매별 결과, 균사체의 경우 열수추출물(hot-water)에서 DPPH 라디컬 소거능, 철 환원 항산화능 및 총 폴리페놀 함량이 높았으며, 균핵은 70% 주정추출물(70% EtOH)에서 철 환원 항산화능 및 총 폴리페놀 함량이, 열수추출물(hot-water)에서 DPPH 라디컬 소거능, 환원력 및 아질산염 소거능이 높았으며, 자실체는 열수추출물(hot-water)에서 DPPH 라디컬 소거능, 환원력, 아질산염 소거능 및 총 폴리페놀 함량이 다른 용매추출물에 비하여 높게 나타났다. 균사체, 균핵 및 자실체 건조시료 중의 베타글루칸 함량은 균핵에서 균사체와 자실체에 비하여 월등히 높은 함량치를 나타냈다. 총 아미노산 및 총 필수아미노산 함량은 자실체와 균사체에서 균핵과 비교하여 월등히 높았으며, 그 중 알기닌(Arg)과 페닐알라닌(Phe)이 높게 검출되었다.

Keywords

References

  1. An GH et.al. 2019. Comparison of physiology activity of medicinal mushroom produced in Korea and China using different extraction solvents. J Mushrooms 17: 34-39.
  2. Benzie IF, Strain JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  3. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  4. Cha JY et.al. 1999. Antioxidative activities and contents of polyphenilic compounds of Cudrania tricuspidata. J Korean Soc Food Sci Nutr 28: 1310-1315.
  5. Chandrasekaran G, Oh DS, Shin HJ. 2011. Properties and potential applications of the culinary-medicinal cauliflower mushrooms, Sparassis crispa Wulf.:Fr. (Aphyllophoromycetideae): a review. Int J Med Mushrooms 13: 177-183. https://doi.org/10.1615/IntJMedMushr.v13.i2.100
  6. Choi SH et.al. 2016. Comparison of ingredients and antioxidant activity of the domestic regional Wolfiporia extensa. Kor J Mycol 44: 23-30. https://doi.org/10.4489/KJM.2016.44.1.23
  7. Choi DB et.al. 2008. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J Ind Eng Chem 14: 765-770. https://doi.org/10.1016/j.jiec.2008.06.005
  8. Choi JS, Park SH, Choi JH. 1989. Nitrite scavenging effect by flavonoids and its structure-effect relationship. Arch Pharm Res 12: 26-33. https://doi.org/10.1007/BF02855742
  9. Chung SY, Kim NK, Yoon S. 1999. Nitrite scavenging effect of methanol fraction obtained from green yellow vegetable juices. J Korean Soc Food Sci Nutr 28: 342-347.
  10. Daniel JS, Steven AC. 1993. Sensitive analysis of cystine/cysteine using 6-aninoquinoquinoly-N-hydroxysuccinimidy carbamate (AQC) derivatives. Tech Protein Chem 4: 299-306.
  11. Duncan DB. 1955. Multiple range and multiple F-test. Biometrics 11: 1-42. https://doi.org/10.2307/3001478
  12. Folin O, Denis W. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-243. https://doi.org/10.1016/S0021-9258(18)88697-5
  13. Gardner PR, Fridovich I. 1991. Superoxide sensitivity of Escherichiacoli 6-phosphogluconate dehydratase. J Biol Chem 266: 1478-1483. https://doi.org/10.1016/S0021-9258(18)52319-X
  14. Gray JI, Dugan Jr LR. 1975. Inhibition of N-nitrosamine formation in model food systems. J Food Sci 40: 981-984. https://doi.org/10.1111/j.1365-2621.1975.tb02248.x
  15. Hamuro J et.al. 1971. Carboxymethylpachymaran, a new water soluble polysaccharide with marked antitumor activity. Nature 233: 486-488. https://doi.org/10.1038/233486a0
  16. Huang SJ, Mau JL. 2006. Antioxidant properties of methanolic extracts from Agraicus blazei with various doses of $\gamma$-irradiation. Lebensm Wiss Technol 39: 707-716. https://doi.org/10.1016/j.lwt.2005.06.001
  17. Jo W et.al. 2013. Changes of the cultivation methods of Poria cocos and its commercialization. J Mushroom 11: 303-307. https://doi.org/10.14480/JM.2013.11.4.303
  18. Jung GT et.al. 2000. The antioxidative antimicrobial and nitrite scavenging effects of Schizandra chinensis RUPRECHT (Omija) seed. Korean J Food Sci Tech 32: 928-935.
  19. Kwon MS et.al. 1998. Quality and functional characteristics of cultivated hoelen (Poria cocos Wolf) under the picking date. J Korean Soc Food Sci Nutr 27: 1034-1040.
  20. Kanayama H, Adachi N, Togami M. 1983. A new antitumor polysaccharide from the mycelia of Poria cocos Wolf. Chem Pharm Bull 31: 1115-1118. https://doi.org/10.1248/cpb.31.1115
  21. Kang A et.al. 1999. Studies on improvement of artificial cultivation and antioxidative activity of Poria cocos. Kor J Mycol 27: 378-382.
  22. Kim JY et.al. 2018. Comparison of composition and antioxidant activity of Poria cocos Wolf cultivated in a mortuary and cemetery. J Mushrooms 16: 111-117.
  23. Kim YJ et.al. 2016. Antioxidant effect of ethanol extract from Poria cocos depending on cultivation methods. Kor J Herbol 31: 107-114. https://doi.org/10.6116/kjh.2016.31.5.107.
  24. Kim SC et.al. 2015. Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher $\beta$-glucan. J Mushroom 13: 79-83. https://doi.org/10.14480/JM.2015.13.1.79
  25. Kim HY et.al. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J Food Sci Technol 40: 166-170.
  26. Kim DG et.al. 2002. The antioxidant ability and nitrite scavenging ability of Poria cocos. J Korean Soc Food Sci Nutr 31: 1097-1101. https://doi.org/10.3746/jkfn.2002.31.6.1097
  27. Kim SM, Cho YS, Sung SK. 2001. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J Food Sci Technol 33: 626-632.
  28. Lee DS, Kim KH, Yook HS. 2016. Antioxidant activities of different parts of Sparassis crispa depending on extraction temperature. J Korean Soc Food Sci Nutr 45: 1617-1622. https://doi.org/10.3746/jkfn.2016.45.11.1617
  29. Lee KS, Lee MW, Lee JY. 1982. Studies on the antibacterial activity of Poria cocos. Kor J Mycol 10: 27-31.
  30. Mau JL et.al. 2004. Antioxidant properties of methanolic extracts from Grifola frondosa, Morchella esculenta and Termitomyces albuminosus mycelia. Food Chem 87: 111-118. https://doi.org/10.1016/j.foodchem.2003.10.026
  31. Moreno S et.al. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic Res 40: 223-231. https://doi.org/10.1080/10715760500473834
  32. Nguyen TK et.al. 2013. Antioxidant and anti-inflammatory activities of fruiting bodies of Dyctiophora indusiata. J Mushroom 11: 269-277. https://doi.org/10.14480/JM.2013.11.4.269
  33. Nukaya H et.al. 1996. Isolation of inhibitors of TPA-induced mouse ear edema from Hoelen, Poria cocos. Chem Pharm Bull 44: 847-849. https://doi.org/10.1248/cpb.44.847
  34. Oh HK. 2019. Biologial activities of Poria cocos Wolf and Corni fructus extracts based on their extraction solvent. J Korean Appl Sci Technol 36: 1303-1311.
  35. Oyaizu M. 1986. Studies on products of browning reactions: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44: 307-315. https://doi.org/10.5264/eiyogakuzashi.44.307
  36. Park NH, Jo WS, Park SC. 2016. Comparison of mineral contents and antioxidant activities of domestic and Chinese Wolfiporia extensa for origin identification. J Mushrooms 14: 232-236. https://doi.org/10.14480/JM.2016.14.4.232
  37. Qi Y et.al. 2013. Antioxidant and anticancer effects of edible and medicinal mushrooms. J Korean Soc Food Sci Nutr 42: 655-662. https://doi.org/10.3746/jkfn.2013.42.5.655
  38. Rice-Evans CA, Miller NJ, Paganga G. 1996. Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  39. Saha AK et.al. 2013. Screening of six ayuvedic medicinal plant extracts for antioxidant and cytotoxic activity. J Phar Phytochem 2: 181-188.
  40. Saito H, Misaki A, Harada T. 1968. A comparison the structure of curdan and pachyman. Agr Biol Chem 32: 1261-1269. https://doi.org/10.1080/00021369.1968.10859213
  41. Seo S et.al. 2017. Antioxidant properties of Lentinula edodes after sawdust bag cultivation with different oak sbustrates. Kor J Mycol 45: 121-131. https://doi.org/10.4489/KJM.20170015
  42. Shimada K et.al. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodexrtrin emulsion. J Agric Food Chem 40: 945-948. https://doi.org/10.1021/jf00018a005
  43. Shon MY. 2007. Antioxidant and anticancer activities of Poria cocos and Machilus thunbergii fermented with mycelial mushrooms. Food Ind Nutr 12: 51-57.
  44. Sohn HY, Shin YK, Kim JS. 2010. Anti-proliferative activities of solid-state fermented medicinal herbs using Phelimus baumii against human colorectal HCT116 cell. J Life Sci 20: 1268-1275. https://doi.org/10.5352/JLS.2010.20.8.1268
  45. Song CH et.al. 2012. Enhancement of antioxidant activity of Codonopsis lanceolata by stepwise steaming process. Kor J Med Crop Sci 20: 238-244. https://doi.org/10.7783/KJMCS.2012.20.4.238
  46. Tai T et.al. 1995. Anti-emetic principles of Poria cocos. Planta Med 61: 527- 530. https://doi.org/10.1055/s-2006-959363
  47. Wang SY et.al. 2003. Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J Agric Food Chem 26: 1506-1512. https://doi.org/10.1021/jf0259415
  48. Wasser SP, Didukh M. 2005. Culinary-medicinal higher basidiomycete mushrooms as a prominent source of dietary supplements and drugs for the 21st century. In Mushroom Biology and Mushroom Products. Acta Edulis Fungi, 20-34.
  49. Yang SB et.al. 2015. Cultivation of Poria cocos using plastic bag method I-effect of temperature and number of plastic bag layers. Curr Res Agric Life Sci 33: 37-40. https://doi.org/10.14518/crals.2015.33.2.008
  50. Zhang M et.al. 2006. Growth-inhibitory effects of a beta-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: cell-cycle arrest and apoptosis induction. Oncol Rep 15: 637-643.