DOI QR코드

DOI QR Code

POLYNOMIAL INVARIANTS FOR VIRTUAL KNOTS VIA VIRTUALIZATION MOVES

  • Im, Young Ho (Department of Mathematics, Pusan National University) ;
  • Kim, Sera (Department of Mathematics, Pusan National University)
  • Received : 2020.05.29
  • Accepted : 2020.07.22
  • Published : 2020.09.30

Abstract

We investigate some polynomial invariants for virtual knots via virtualization moves. We define two types of polynomials WG(t) and S2G(t) from the definition of the index polynomial for virtual knots. And we show that they are invariants for virtual knots on the quotient ring Z[t±1]/I where I is an ideal generated by t2 - 1.

Keywords

References

  1. Heather A. Dye, An Invitation to Knot Theory: Virtual and Classical, ISBN : 13:978-1-4987-0164-8
  2. M. Goussarov, M. Pollyak and O. Viro, Finite type invariants of classical and virtual knots, Topology 39 (2000),1045-1068. https://doi.org/10.1016/S0040-9383(99)00054-3
  3. Y. H. Im and S. Kim, A sequence of polynomial invariants for Gauss diagrams, J. Knot Theory Ramifications 26 (2017), no. 7, 1750039. https://doi.org/10.1142/S0218216517500390
  4. K. Lee, Y. H. Im and S. Kim, State sum invariants for flat virtual links using the flat intersection indices, preprint.
  5. L. H. Kauffman, Virtual knot theory, European J. Combin. 20 (1999), 663-690. https://doi.org/10.1006/eujc.1999.0314
  6. M. Polyak, Minimal generating sets of Reidemeister moves, Quantum Topology 1 (2010), 399-411. https://doi.org/10.4171/QT/10