DOI QR코드

DOI QR Code

Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane

  • Park, Sun Hwa (Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Ami (Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • An, Jieun (Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Cho, Hyun Sung (Department of Anesthesiology and Pain Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kang, Tong Mook (Department of Physiology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 투고 : 2020.09.29
  • 심사 : 2020.10.05
  • 발행 : 2020.11.01

초록

In contrast to ventricular myocytes, the structural and functional importance of atrial transverse tubules (T-tubules) is not fully understood. Therefore, we investigated the ultrastructure of T-tubules of living rat atrial myocytes in comparison with ventricular myocytes. Nanoscale cell surface imaging by scanning ion conductance microscopy (SICM) was accompanied by confocal imaging of intracellular T-tubule network, and the effect of removal of T-tubules on atrial excitation-contraction coupling (EC-coupling) was observed. By SICM imaging, we classified atrial cell surface into 4 subtypes. About 38% of atrial myocytes had smooth cell surface with no clear T-tubule openings and intracellular T-tubules (smooth-type). In 33% of cells, we found a novel membrane nanostructure running in the direction of cell length and named it 'longitudinal fissures' (LFs-type). Interestingly, T-tubule openings were often found inside the LFs. About 17% of atrial cells resembled ventricular myocytes, but they had smaller T-tubule openings and a lower Z-groove ratio than the ventricle (ventricular-type). The remaining 12% of cells showed a mixed structure of each subtype (mixed-type). The LFs-, ventricular-, and mixed-type had an appreciable amount of reticular form of intracellular T-tubules. Formamide-induced detubulation effectively removed atrial T-tubules, which was confirmed by both confocal images and decreased cell capacitance. However, the LFs remained intact after detubulation. Detubulation reduced action potential duration and L-type Ca2+ channel (LTCC) density, and prolonged relaxation time of the myocytes. Taken together, we observed heterogeneity of rat atrial T-tubules and membranous ultrastructure, and the alteration of atrial EC-coupling by disruption of T-tubules.

키워드

참고문헌

  1. Cheng H, Cannell MB, Lederer WJ. Propagation of excitationcontraction coupling into ventricular myocytes. Pflugers Arch. 1994;428:415-417. https://doi.org/10.1007/BF00724526
  2. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198-205. https://doi.org/10.1038/415198a
  3. Yang Z, Pascarel C, Steele DS, Komukai K, Brette F, Orchard CH. $Na^{+}$-$Ca^{2+}$ exchange activity is localized in the T-tubules of rat ventricular myocytes. Circ Res. 2002;91:315-322. https://doi.org/10.1161/01.RES.0000030180.06028.23
  4. Lyon AR, MacLeod KT, Zhang Y, Garcia E, Kanda GK, Lab MJ, Korchev YE, Harding SE, Gorelik J. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart. Proc Natl Acad Sci U S A. 2009;106:6854-6859. https://doi.org/10.1073/pnas.0809777106
  5. Wei S, Guo A, Chen B, Kutschke W, Xie YP, Zimmerman K, Weiss RM, Anderson ME, Cheng H, Song LS. T-tubule remodeling during transition from hypertrophy to heart failure. Circ Res. 2010;107:520-531. https://doi.org/10.1161/CIRCRESAHA.109.212324
  6. Heinzel FR, Bito V, Biesmans L, Wu M, Detre E, von Wegner F, Claus P, Dymarkowski S, Maes F, Bogaert J, Rademakers F, D'hooge J, Sipido K. Remodeling of T-tubules and reduced synchrony of $Ca^{2+}$ release in myocytes from chronically ischemic myocardium. Circ Res. 2008;102:338-346. https://doi.org/10.1161/CIRCRESAHA.107.160085
  7. Kirk MM, Izu LT, Chen-Izu Y, McCulle SL, Wier WG, Balke CW, Shorofsky SR. Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes. J Physiol. 2003;547(Pt 2):441-451. https://doi.org/10.1113/jphysiol.2002.034355
  8. Bootman MD, Smyrnias I, Thul R, Coombes S, Roderick HL. Atrial cardiomyocyte calcium signalling. Biochim Biophys Acta. 2011;1813:922-934. https://doi.org/10.1016/j.bbamcr.2011.01.030
  9. Dibb KM, Clarke JD, Eisner DA, Richards MA, Trafford AW. A functional role for transverse (t-) tubules in the atria. J Mol Cell Cardiol. 2013;58:84-91. https://doi.org/10.1016/j.yjmcc.2012.11.001
  10. Frisk M, Koivumaki JT, Norseng PA, Maleckar MM, Sejersted OM, Louch WE. Variable t-tubule organization and $Ca^{2+}$ homeostasis across the atria. Am J Physiol Heart Circ Physiol. 2014;307:H609-H620. https://doi.org/10.1152/ajpheart.00295.2014
  11. Richards MA, Clarke JD, Saravanan P, Voigt N, Dobrev D, Eisner DA, Trafford AW, Dibb KM. Transverse tubules are a common feature in large mammalian atrial myocytes including human. Am J Physiol Heart Circ Physiol. 2011;301:H1996-H2005. https://doi.org/10.1152/ajpheart.00284.2011
  12. Brette F, Komukai K, Orchard CH. Validation of formamide as a detubulation agent in isolated rat cardiac cells. Am J Physiol Heart Circ Physiol. 2002;283:H1720-H1728. https://doi.org/10.1152/ajpheart.00347.2002
  13. Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ. Excitationcontraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol. 2010;48:379-386. https://doi.org/10.1016/j.yjmcc.2009.09.016
  14. Smyrnias I, Mair W, Harzheim D, Walker SA, Roderick HL, Bootman MD. Comparison of the T-tubule system in adult rat ventricular and atrial myocytes, and its role in excitation-contraction coupling and inotropic stimulation. Cell Calcium. 2010;47:210-223. https://doi.org/10.1016/j.ceca.2009.10.001
  15. Anariba F, Anh JH, Jung GE, Cho NJ, Cho SJ. Biophysical applications of scanning ion conductance microscopy (SICM). Mod Phys Lett B. 2012;26:1130003. https://doi.org/10.1142/S0217984911300031
  16. Novak P, Li C, Shevchuk AI, Stepanyan R, Caldwell M, Hughes S, Smart TG, Gorelik J, Ostanin VP, Lab MJ, Moss GW, Frolenkov GI, Klenerman D, Korchev YE. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat Methods. 2009;6:279-281. https://doi.org/10.1038/nmeth.1306
  17. Chen CC, Zhou Y, Baker LA. Scanning ion conductance microscopy. Annu Rev Anal Chem (Palo Alto Calif). 2012;5:207-228. https://doi.org/10.1146/annurev-anchem-062011-143203
  18. Miragoli M, Moshkov A, Novak P, Shevchuk A, Nikolaev VO, El-Hamamsy I, Potter CM, Wright P, Kadir SH, Lyon AR, Mitchell JA, Chester AH, Klenerman D, Lab MJ, Korchev YE, Harding SE, Gorelik J. Scanning ion conductance microscopy: a convergent high-resolution technology for multi-parametric analysis of living cardiovascular cells. J R Soc Interface. 2011;8:913-925. https://doi.org/10.1098/rsif.2010.0597
  19. Klenerman D, Korchev YE, Davis SJ. Imaging and characterisation of the surface of live cells. Curr Opin Chem Biol. 2011;15:696-703. https://doi.org/10.1016/j.cbpa.2011.04.001
  20. Liu BC, Lu XY, Song X, Lei KY, Alli AA, Bao HF, Eaton DC, Ma HP. Scanning ion conductance microscopy: a nanotechnology for biological studies in live cells. Front Physiol. 2013;3:483. https://doi.org/10.3389/fphys.2012.00483
  21. Kawai M, Hussain M, Orchard CH. Excitation-contraction coupling in rat ventricular myocytes after formamide-induced detubulation. Am J Physiol. 1999;277:H603-H609.
  22. Gorelik J, Yang LQ, Zhang Y, Lab M, Korchev Y, Harding SE. A novel Z-groove index characterizing myocardial surface structure. Cardiovasc Res. 2006;72:422-429. https://doi.org/10.1016/j.cardiores.2006.09.009
  23. Glukhov AV, Balycheva M, Sanchez-Alonso JL, Ilkan Z, Alvarez-Laviada A, Bhogal N, Diakonov I, Schobesberger S, Sikkel MB, Bhargava A, Faggian G, Punjabi PP, Houser SR, Gorelik J. Direct evidence for microdomain-specific localization and remodeling of functional L-type calcium channels in rat and human atrial myocytes. Circulation. 2015;132:2372-2384. https://doi.org/10.1161/CIRCULATIONAHA.115.018131
  24. Brette F, Salle L, Orchard CH. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes. Biophys J. 2006;90:381-389. https://doi.org/10.1529/biophysj.105.069013
  25. Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM. The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci. 2011;278:2714-2723.
  26. Soeller C, Cannell MB. Examination of the transverse tubular system in living cardiac rat myocytes by 2-photon microscopy and digital image-processing techniques. Circ Res. 1999;84:266-275. https://doi.org/10.1161/01.RES.84.3.266
  27. Swift F, Franzini-Armstrong C, Oyehaug L, Enger UH, Andersson KB, Christensen G, Sejersted OM, Louch WE. Extreme sarcoplasmic reticulum volume loss and compensatory T-tubule remodeling after Serca2 knockout. Proc Natl Acad Sci U S A. 2012;109:3997-4001. https://doi.org/10.1073/pnas.1120172109
  28. Brette F, Salle L, Orchard CH. Differential modulation of L-type $Ca^{2+}$ current by SR $Ca^{2+}$ release at the T-tubules and surface membrane of rat ventricular myocytes. Circ Res. 2004;95:e1-e7.

피인용 문헌

  1. Scanning Ion Conductance Microscopy vol.121, pp.19, 2020, https://doi.org/10.1021/acs.chemrev.0c00962