DOI QR코드

DOI QR Code

Enhancing the Reliability of Coating Flaw Detection for Pipes Buried in Soil Using a Multi-Electrode Detector

다전극 탐상을 통한 토중 매설배관 피복결함 탐상 정확도의 개선

  • Kim, M.G. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Lim, B.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Kim, K.T. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University) ;
  • Chang, H.Y. (Power Engineering Research Institute, KEPCO E&C) ;
  • Park, H.B. (Power Engineering Research Institute, KEPCO E&C) ;
  • Kim, Y.S. (Materials Research Center for Energy and Green Technology, School of Materials Science and Engineering, Andong National University)
  • 김민기 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 임부택 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김기태 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 장현영 (한국전력기술주식회사) ;
  • 박흥배 (한국전력기술주식회사) ;
  • 김영식 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2020.10.15
  • Accepted : 2020.10.22
  • Published : 2020.10.30

Abstract

External corrosion of buried pipes can be controlled using both coating and cathodic protection. However, deterioration of the coating can occur due to several reasons. The detection reliabilty of coating flaw detection methods is affected by interference such as metal objects connected to rectifiers and copper grids. When performing parallel direct current voltage gradient (DCVG) inspection, a sine wave form without potential reversal in voltage gradient appears in the area where the interference exists. However, this area may be not identified using existing methods. The objective of this study was to determine the effect of analyzing direction on the reliability of coating flaw detection of pipes buried in soil using a multi-electrode detector. DCVG on the buried pipe was measured along the buried pipe. This measurement parallel to the pipe was repeated. Measured data were analyzed for parallel, vertical, and diagonal directions. The reliability of coating flaw detection was improved by up to 46.4% compared to the conventional method.

Keywords

References

  1. J. G. Kim and Y. W. Kim, Corros. Sci., 43, 2011 (2001). https://doi.org/10.1016/S0010-938X(01)00015-4
  2. I. Gurrappa, Mat. Pro. Technol., 166, 256 (2005). https://doi.org/10.1016/j.jmatprotec.2004.09.074
  3. E. S. Ibrahim, Elect. Pow. Syst. Res., 52, 9 (1999). https://doi.org/10.1016/S0378-7796(98)00133-3
  4. K. T. Kim, H. W. Kim, Y. S. Kim, H. Y. Chang, B. T. Lim, and H. B. Park, Corros. Sci. Tech., 14, 12 (2015). https://doi.org/10.14773/cst.2015.14.1.12
  5. S. Srikanth, T. S. N. Sankaranarayanan, K. Gopalakrishna, B. R. V. Narasimhan, T. V. K. Das, and S. K. Das, Eng. Fail. Anal., 12, 634 (2005). https://doi.org/10.1016/j.engfailanal.2004.02.006
  6. A. Osella, A. Favetto, and E. Lopez, Appl. Geophys., 38, 219 (1998). https://doi.org/10.1016/S0926-9851(97)00019-0
  7. A. Osella and A. Favetto, Appl. Geophys., 44, 303 (2000). https://doi.org/10.1016/S0926-9851(00)00008-2
  8. I. A. Metwally, H. M. Al-Mandhari, A. Gastli, and Z. Nadir, Eng. Anal. Bound. Elem., 31, 485 (2007). https://doi.org/10.1016/j.enganabound.2006.11.003
  9. L. C. Wrobel and P. Miltiadou, Eng. Anal. Bound. Elem., 28, 267 (2004). https://doi.org/10.1016/S0955-7997(03)00057-2
  10. R. A. Gummow and P. Eng, J. Atmos. Sol. -Terr. Phys., 64, 1755 (2002). https://doi.org/10.1016/S1364-6826(02)00125-6
  11. P. Simon, Plant Engineering: Evaluation of Indirect Assessment Techniques for Coating Flaw Detection, p. 3-8, Technical Report 1022962, EPRI (2011).
  12. M. E. Orazem, Underground Pipeline Corrosion, 1st ed., p. 227, Woodhead Publishing, Cambridge (2014). https://doi.org/10.1533/9780857099266.2.227
  13. Y. B. Cho, Y. T. Kho, S. Y. Li, K. S. Jeon, and K. W. Park, J. Corros. Sci. Soc. of Kor., 26, 400 (1997). http://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00260500400
  14. D. H. Boteler, L. Trichtchenko, C. Blais, and R. Pirjola, Proc. Corrosion 2013 Conf., p. 2522, ID NACE-2013-2522, NACE International, Orlando, Florida, USA (2013).
  15. Z. Masilela and J. Pereira, Eng. Fail. Anal., 5, 99 (1998). https://doi.org/10.1016/S1350-6307(98)00006-5
  16. M. Norm, Mater. Performance, 52, 96 (2013).
  17. Y. D. Ryou, J. H. Lee, Y. K. Yoon, and H. S. Lim, J. Korean Inst. Gas, 18, 12 (2014). https://doi.org/10.7842/kigas.2014.18.5.12
  18. A. Smart. A. Jensen, S. Biagiotti, and E. Elder, Proc. Corrosion 2011 Conf., Paper No. 11181, NACE International, Houston, Texas, USA (2011).
  19. B. T. Lim, M. G. Kim, K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 18, 277 (2019). https://doi.org/10.14773/cst.2019.18.6.277
  20. J. H. Park, H. M. Kim, and G. S. Park, J. Korean Magn.etics Soc., 26, 24 (2016). https://doi.org/10.4283/JKMS.2016.26.1.024
  21. S. L. Shin, G. H. Lee, U. Ahmed, Y. K. Lee, and C. H. Han, J. Haz. Mat., 342, 279 (2018). https://doi.org/10.1016/j.jhazmat.2017.08.029
  22. Y. D. Ryou, J. J. Kim, and D. K. Kim, J. Korean Inst. Gas, 19, 38 (2015). https://doi.org/10.7842/kigas.2015.19.3.38
  23. J. J. Kim, M. S. Seo and D. K. Kim, J. Korean Inst. Gas, 18, 66 (2014). https://doi.org/10.7842/kigas.2014.18.5.66
  24. S. Xie, Z. Duan, J. Li, Z. Tong, M. Tian, and Z. Chen, Sensors and Actuators, 309, 1 (2020). https://doi.org/10.1016/j.sna.2020.112030
  25. Y. D. Ryou, J. H. Lee, Y. D. Jo, and J. J. Kim, J, Korean Inst. Gas, 20, 50 (2016). https://doi.org/10.7842/kigas.2016.20.4.50
  26. K. J. Satsios, D. P. Labridis, and P. S. Dokopoulos, Eur. T. Electr. Power, 8, 193 (1998). https://doi.org/10.1002/etep.4450080307
  27. Y. B. Cho, K. W. Park, K. S. Jeon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, Int. Pipeline Conf., 1, 463 (1996). https://doi.org/10.1115/IPC1996-1851
  28. M. Magura and J. Brodniansky, Procedia Engineer., 40, 50 (2012). https://doi.org/10.1016/j.proeng.2012.07.054
  29. Y. B. Cho, K. W. Park, K. S. Cheon, H. S. Song, D. S. Won, S. M. Lee, and Y. T. Kho, J. Corros. Sci. Soc. of Kor., 24, 167 (1995). http://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=J00240300167
  30. K. S. Kim, B. T. Lim, H. Y. Chang, and H. B. Park, Journal of Power Engineering, 30, 3, 116 (2019).
  31. H. Y. Chang, K. T. Kim, B. T. Lim, K. S. Kim, J. W. Kim, H. B. Park, and Y. S. Kim, Corros. Sci. Tech., 16, 115 (2017). https://doi.org/10.14773/cst.2017.16.3.115
  32. H. Y. Chang, H. B. Park, K. T. Kim, Y. S. Kim, and Y. Y. Jang, Trans. Korean Soc. Press. Vessel. Pip., 11, 61 (2015). https://doi.org/10.20466/KPVP.2015.11.2.061
  33. Y. Chao, L. Jianliang, L. Zili, Z. Shouxin, D. Long, and Z. Chengbin, Corros. Rev., 37, 273 (2019). https://doi.org/10.1515/corrrev-2018-0089
  34. Z. G. Chen, C. K. Qin, J. X. Tand, and Y. Zhou, J. Natural Gas Sci. Eng., 15, 76 (2013). https://doi.org/10.1016/j.jngse.2013.09.003
  35. M. G. Kim, B. T. Lim, K. T. Kim, H. Y. Chang, and Y. S. Kim, Corros. Sci. Tech., 19, 211 (2020). https://doi.org/10.14773/cst.2020.19.4.211
  36. J. P. Nicholson, Proc. Eurocorr 2010 Conf., p. 9145, Moscow, Russia (2010).
  37. DCVG Training Manual, DC-Voltage Gradient (DCVG) Surveys Using MCM's Integrated Pipeline Survey Test Equipment and Database Management Package, pp. 4 - 19, M. C. Miller Co. (2020).
  38. E. Naderi and M. H. Moayed, Anti-Corros. Method. Mat., 60, 312 (2013). https://doi.org/10.1108/ACMM-03-2013-1248