DOI QR코드

DOI QR Code

Characterization of tissue conditioner containing chitosan-doped silver nanoparticles

키토산-은나노 복합체가 함유된 의치 연성이장재 특성에 관한 연구

  • Nam, Ki Young (Department of Dentistry, College of Medicine, Keimyung University) ;
  • Lee, Chul Jae (Division of Cosmetics Chemistry, Yeungnam College of Science & Technology)
  • 남기영 (계명대학교 의과대학 치과학교실 및 계명대학교 동산병원 치과) ;
  • 이철재 (영남이공대학교 화장품화공계열)
  • Received : 2020.02.03
  • Accepted : 2020.09.11
  • Published : 2020.10.30

Abstract

Purpose: Development of a latent antimicrobial soft liner is strongly needed to overcome a possible inflammation related with its dimensional degrade or surface roughness. Modified tissue conditioner (TC) containing chitosan-doped silver nanoparticles (ChSN) complexes were synthesized and assessed for their characterizations. Materials and methods: ChSN were preliminarily synthesized from silver nitrate (AgNO3), sodium borohydride (NaBH4) as a reducing agent and chitosan biopolymer as a capping agent. Ultraviolet-visible and Fourier transform infrared spectroscopy were conducted to confirm the stable reduction of nanoparticles with chitosan. Modified TC blended with ChSN by 0 (control), 1.0, 3.0 and 5.0 % mass fraction were mechanically tested by ultimate tensile strength (UTS), silver ion elution and color stability (n=7). Results: At 24 hour and 7 day storage periods, UTS values were not significant (P>.05) as compared with pristine TC (control) and silver ion was detected with the dose-dependent values of ChSN incorporated. Color stability of TC were influenced by ChSN add, with the higher doses, the significantly greater color changes (P<.05). Conclusion: A stable synthesized ChSN was acquired and modified TC loading ChSN was characterized as silver ion releasing without detrimental physical property. For its clinical application, antimicrobial test, color control and multifactor investigations are still required.

목적: 의치 연성이장재 적용기간 경과에 따른 물성저하 및 표면거침성이 의치구내염 발생을 야기할 수 있으며 이 논문의 목적은 항균물질인 키토산-은나노 복합체를 환원법으로 합성하고 이것을 연성이장재에 투여 후 그 특성을 평가하는 것이다. 재료 및 방법: 질산은과 키토산 분말로 혼합 정제된 키토산-은나노 복합체를 자외선 가시광선 및 적외선 분광법으로 분석하고 연성이장재 분말에 각각 0(대조군), 1.0, 3.0 및 5.0의 질량 분율로 첨가 후 단량체 용액과 각각 중합하였다. 항균복합체가 첨가된 연성이장재 시편의 특성은 중합완료 24 시간과 7 일 후 미세인장강도, 은 이온 용출 그리고 색조변화 등을 통하여 각각 평가하였다. 결과: 분광분석을 통하여 안정적인 키토산-은나노 복합체의 합성을 확인하였다. 대조군과 비교 시 복합체첨가에 따른 연성이장재의 유의한 인장강도 변화는 나타내지 않았고 (P > .05) 은 이온 용출은 복합체 투여량에 대하여 농도비례적으로 측정되었으며 색조변화량 또한 농도비례적으로 증가되었다 (P < .05). 결론: 키토산-은나노 복합체가 투여된 연성이장재는 적절한 물성과 은 이온 용출 특성을 가진 보철생체재료의 가능성을 도출하였고 임상 적용을 위한 항균실험 및 색조 안정성 등의 연구들이 추후 필요할 것으로 사료된다.

Keywords

References

  1. Okita N, Orstavik D, Orstavik J, Ostby K. In vivo and in vitro studies on soft denture materials: microbial adhesion and tests for antibacterial activity. Dent Mater 1991;7:155-60. https://doi.org/10.1016/0109-5641(91)90035-W
  2. Harrison A, Basker RM, Smith IS. The compatibility of temporary soft materials with immersion denture cleansers. Int J Prosthodont 1989;2:254-8.
  3. Nikawa H, Iwanaga H, Hamada T, Yuhta S. Effects of denture cleansers on direct soft denture lining materials. J Prosthet Dent 1994;72:657-62. https://doi.org/10.1016/0022-3913(94)90300-X
  4. Schneid TR. An in vitro analysis of a sustained release system for the treatment of denture stomatitis. Spec Care Dentist 1992;12:245-50. https://doi.org/10.1111/j.1754-4505.1992.tb00458.x
  5. Truhlar MR, Shay K, Sohnle P. Use of a new assay technique for quantification of antifungal activity of nystatin incorporated in denture liners. J Prosthet Dent 1994;71:517-24. https://doi.org/10.1016/0022-3913(94)90193-7
  6. Chow CK, Matear DW, Lawrence HP. Efficacy of antifungal agents in tissue conditioners in treating candidiasis. Gerodontology 1999;16:110-8. https://doi.org/10.1111/j.1741-2358.1999.00110.x
  7. Sanpui P, Murugadoss A, Prasad PV, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novel chitosan- Ag-nanoparticle composite. Int J Food Microbiol 2008;31;124:142-6. https://doi.org/10.1016/j.ijfoodmicro.2008.03.004
  8. Kalaivani R, Maruthupandy M, Muneeswaran T, Singh M, Sureshkumar S, Anand M, Ramakritinan CM, Quero F, Kumaraguru AK. Synthesis, characterization, fluorescence, photocatalytic and antibacterial activity of CdS nanoparticles using schiff base. J Fluoresc 2015;25:1481-92. https://doi.org/10.1007/s10895-015-1639-5
  9. Nascimento EG, Sampaio TB, Medeiros AC, Azevedo EP. Evaluation of chitosan gel with 1% silver sulfadiazine as an alternative for burn wound treatment in rats. Acta Cir Bras 2009;24:460-5. https://doi.org/10.1590/S0102-86502009000600007
  10. Liu X, Hu Q, Fang Z, Zhang X, Zhang B. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 2009;25:3-8. https://doi.org/10.1021/la802754t
  11. Samuel U, Guggenbichler JP. Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 2004;23:S75-8. https://doi.org/10.1016/j.ijantimicag.2003.12.004
  12. Wright JB, Lam K, Hansen D, Burrell RE. Efficacy of topical silver against fungal burn wound pathogens. Am J Infect Control 1999;27:344-50. https://doi.org/10.1016/S0196-6553(99)70055-6
  13. Wei D, Sun W, Qian W, Ye Y, Ma X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 2009;344:2375-82. https://doi.org/10.1016/j.carres.2009.09.001
  14. Rhim JW, Hong SI, Park HM, Ng PK. Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 2006;54:5814-22. https://doi.org/10.1021/jf060658h
  15. Nguyen VQ, Ishihara M, Mori Y, Nakamura S, Kishimoto S, Fujita M, Hattori H, Kanatani Y, Ono T, Miyahira Y, Matsui T. Preparation of size-controlled silver nanoparticles and chitosan-based composites and their anti-microbial activities. Biomed Mater Eng 2013;23:473-83.
  16. Mei L, Xu Z, Shi Y, Lin C, Jiao S, Zhang L, Li P. Multivalent and synergistic chitosan oligosaccharide-Ag nanocomposites for therapy of bacterial infection. Sci Rep 2020;19;10:10011. https://doi.org/10.1038/s41598-020-67139-7
  17. Ribeiro TG, Franca JR, Fuscaldi LL, Santos ML, Duarte MC, Lage PS, Martins VT, Costa LE, Fernandes SO, Cardoso VN, Castilho RO, Soto M, Tavares CA, Faraco AA, Coelho EA, Chavez-Fumagalli MA. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nanomedicine 2014;9:5341-53. https://doi.org/10.2147/IJN.S68966
  18. Peng Y, Song C, Yang C, Guo Q, Yao M. Low molecular weight chitosan-coated silver nanoparticles are effective for the treatment of MRSA-infected wounds. Int J Nanomedicine 2017;12:295-304. https://doi.org/10.2147/IJN.S122357
  19. American Society for Testing and Materials. Standard test methods for vulcanized rubber and thermoplastic elastomers tension. West Conshohocken, ASTM, 2002. D412-98a.
  20. Chang J, Da Silva JD, Sakai M, Kristiansen J, Ishikawa-Nagai S. The optical effect of composite luting cement on all ceramic crowns. J Dent 2009;37:937-43. https://doi.org/10.1016/j.jdent.2009.07.009
  21. Duarte ML, Ferreira MC, Marvao MR, Rocha J. An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 2002;31:1-8. https://doi.org/10.1016/S0141-8130(02)00039-9
  22. Waters MG, Jagger RG. Mechanical properties of an experimental denture soft lining material. J Dent 1999;27:197-202. https://doi.org/10.1016/S0300-5712(98)00046-3
  23. Ueshige M, Abe Y, Sato Y, Tsuga K, Akagawa Y, Ishii M. Dynamic viscoelastic properties of antimicrobial tissue conditioners containing silver-zeolite. J Dent 1999;27:517-22. https://doi.org/10.1016/S0300-5712(99)00009-3
  24. Schneid TR. An in vitro analysis of a sustained release system for the treatment of denture stomatitis. Spec Care Dentist 1992;12:245-50. https://doi.org/10.1111/j.1754-4505.1992.tb00458.x
  25. Kumar R, Munstedt H. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials 2005;26:2081-8. https://doi.org/10.1016/j.biomaterials.2004.05.030
  26. Lee CJ, Nam KY, Kim DY, Kim HJ. New routes to the preparation of silver-soft liner nanocomposites as an antibacterial agent. J Industrial Eng Chem 2014;20:1276-9. https://doi.org/10.1016/j.jiec.2013.07.004
  27. Imazato S, Ebi N, Takahashi Y, Kaneko T, Ebisu S, Russell RR. Antibacterial activity of bactericide-immobilized filler for resin-based restoratives. Biomaterials 2003;24:3605-9. https://doi.org/10.1016/S0142-9612(03)00217-5
  28. Chladek G, Mertas A, Barszczewska-Rybarek I, Nalewajek T, Zmudzki J, Krol W, Lukaszczyk J. Antifungal activity of denture soft lining material modified by silver nanoparticles-a pilot study. Int J Mol Sci 2011;12:4735-44. https://doi.org/10.3390/ijms12074735