DOI QR코드

DOI QR Code

Influence of hot deformation and composition on microstructure development of magnesium-stannide alloys

  • Pandel, Divija (Department of Materials Research Centre, MNIT) ;
  • Banerjee, Malay K. (Department of Metallurgical and Material Engineering, MNIT)
  • Received : 2018.05.26
  • Accepted : 2020.09.12
  • Published : 2020.09.25

Abstract

The microstructural evolution of different compositions of Mg-Sn alloys (30%Sn-70%Mg, 40%Sn-60%Mg and 50%Sn-50%Mg) is studied at first to understand the changes observed with change in tin content and deformation conditions. The Mg2Sn phase increases with increase in tin content and a significant substructure development is found in 50%Sn-50%Mg alloy. The above observation led to further deformation studies on Mg2Sn based thermoelectric materials with higher tin percentage. The microstructure in terms of Electron backscatter diffraction (EBSD)measurements is studied in detail followed by the determination of thermoelectric properties i.e., Seebeck coefficient and electrical conductivity for both as cast and extruded Mg(2+x)Sn-Ag alloys. The electrical conductivity of the extruded Mg(2+x)Sn-.3wt%Ag {x =1} alloy was found to be more than its as cast counterpart while the Seebeck coefficient values remained almost the same.

Keywords

References

  1. An, T.H, Park, C., Soon, W.S., Choi, S.M., Kim, I.H. and Kim, S.U. (2012a), "Enhancement of p-type thermoelectric properties in an $Mg_2Sn$ system", J. Korean. Phys, Soc., 60, 1717-1723. https://doi.org/10.3938/jkps.60.1717
  2. An, T.H., Choi, S.M., Kim, I.H., Kim, S.U., Seo W.S., Kim, J.Y. and Park, C. (2012b), "Thermoelectric properties of a doped $Mg_2Sn$ system", Renew. Energy, 42, 23-27. https://doi.org/10.1016/j.renene.2011.09.030
  3. Bahk, J.H., Bian, Z. and Shakouri, A. (2014), "Electron transport modeling and energy filtering for efficient thermoelectric $Mg_2Si_{1-x}Sn_x$ solid solutions", Phys. Rev. B, 89(7), 075204. https://doi.org/10.1103/PhysRevB.89.075204
  4. Bashir, M.B.A., Said, S.M., Sabri, M.F.M., Shnawah, D.A. and Elsheikh, M.H. (2014), "Recent advances on $Mg_2Si_{1-x}Sn_x$ materials for thermoelectric generation", Renew. Sustain. Energy Rev., 37, 569-584. https://doi.org/10.1016/j.rser.2014.05.060
  5. Beer, A.G. and Barnett, M.R. (2007), "Microstructural development during hot working of Mg-3Al-1Zn", Metall. Mater. Trans. A, 38A, 1856-1867. https://doi.org/10.1007/s11661-007-9207-5
  6. Biswas, K., He, J., Blum, I.D., Iwu, C., Hogan, T.P., Seidman, D.N., Dravid, V.P. and Kanatzidis, M.G. (2012), "High-performance bulk thermoelectrics with all-scale hierarchical architectures", Nature, 489, 414-418. https://doi.org/10.1038/nature11439
  7. Bux, S.K., Fleurial, J.P. and Kaner, R.B. (2010), "Nanostructured materials for thermoelectric applications", Chem. Commu., 46(44), 8311-8324. https://doi.org/10.1039/C0CC02627A
  8. Chapellier, P.H., Ray, R.K. and Jonas, J.J. (1990), "Prediction of transformation textures in steels", Acta. Metall. Mater., 38(8), 1475-1490. https://doi.org/10.1016/0956-7151(90)90116-X
  9. Chen, H.Y. and Savvides, N. (2009), "Microstructure and thermoelectric properties of n- and p-type doped $Mg_2Sn$ compounds prepared by the modified Bridgman method", J. Electron. Mater., 38, 1056-1060. https://doi.org/10.1007/s11664-008-0630-1
  10. Chen, H.Y., Savvides, N., Dasgupta, T., Stiewe, C. and Mueller, E. (2010), "Electronic and thermal transport properties of $Mg_2Sn$ crystals containing finely dispersed eutectic structures", Physica Status Solidi (a), 207, 2523-2531. https://doi.org/10.1002/pssa.201026119
  11. Choi, S.M., An, T.H., Seo, W.S., Park, C., Kim, I.H. and Kim, S.U. (2012), "Doping effects on thermoelectric properties in the $Mg_2Sn$ system", J. Electron. Mater., 41, 1071-1076. https://doi.org/10.1007/s11664-012-1985-x
  12. Elsheikh, M.H., Shnawah, D.A., Sabri, M.F.M., Said, S.B.M., Hassan, M.H., Bashir, M.B.A. and Mohamad, M. (2014), "A review on thermoelectric renewable energy: principle parameters that affect their performance", Renew. Sustain. Energy Rev., 30, 337-355. https://doi.org/10.1016/j.rser.2013.10.027
  13. Fedorov, M.I., Zaitsev, V.K., Gurieva, E.A., Eremin, I.S., Konstantinov, P.P., Samunin, A.Y. and Vedernikov, M.V. (2006), "Highly effective $Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Rev. B, 74(4), 45207. https://doi.org/10.1103/PhysRevB.74.045207
  14. Han, C., Li, Z. and Dou, S. (2014), "Recent progress in thermoelectric materials", Chinese Sci. Bull., 59(18), 2073-2091. https://doi.org/10.1007/s11434-014-0237-2
  15. Hu, L., Gao, H., Liu, X., Xie, H., Shen, J., Zhu, T. and Zhao, X. (2012), "Enhancement in thermoelectric performance of bismuth telluride based alloys by multi-scale microstructural effects", J. Mater. Chem., 22(32), 16484-16490. https://doi.org/10.1039/C2JM32916F
  16. Humphreys, F.J. and Hatherly, M. (2004), Recrystallization and Related Annealing Phenomenon (Second Edition.
  17. Ion, S.E., Humphreys, F.J. and White, S.H. (1982), "Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium", Acta Metall., 30(10), 1909-1919. https://doi.org/10.1016/0001-6160(82)90031-1
  18. Jiang, G., Chen, L., Gao, H., Du, Z., Zhao, X., Tritt, T.M. and Zhu, T. (2013), "Improving p-type thermoelectric performance of $Mg_2$ (Ge,Sn) compounds via solid solution and Ag doping", Intermetallics, 32, 312-317. https://doi.org/10.1016/j.intermet.2012.08.002
  19. Johnson, D.D. and Alam, A. (2018), "Enhanced thermoelectric performance of $Mg_2Si_{1-x}Sn_x$ codoped with Bi and Cr", Phys. Rev B, 98(11), 115204. https://doi.org/10.1103/PhysRevB.98.115204
  20. Kim, S., Wiendlocha, B., Jin, H., Tobola, J. and Heremans, J.P. (2014), "Electronic structure and thermoelectric properties of p-type Ag-doped $Mg_2Sn$ and $Mg_2Si_{1-x}Sn_x$ (x = 0.05, 0.1)", J. Appl. Phys., 116(15), 153706. https://doi.org/10.1063/1.4898013
  21. Kim, C.E., Soon, A. and Stampfl, C. (2016), "Unraveling the origins of conduction band valley degeneracies in $Mg_2Si_{1-x}Sn_x$ thermoelectrics", Phys. Chem. Chem. Phys., 18(2), 939-946. https://doi.org/10.1039/C5CP06163F
  22. Kitagawa, H., Kurata, A., Araki, H., Morito, S. and Tanabe, E. (2010), "Effect of Deformation Temperature on Texture and Thermoelectric Properties of $Bi_{0.5}Sb_{1.5}Te_3$ Prepared by Hot-Press Deformation", J. Electron. Mater., 39, 1692-1695. https://doi.org/10.1007/s11664-010-1181-9
  23. Lee, D.M., Lim, C.H., Cho, D.C., Lee, Y.S. and Lee, C.H. (2006), "Effects of annealing on the thermoelectric and microstructural properties of deformed n-type $Bi_2Te_3$-based compounds", J. Electron. Mater, 35, 360-365. https://doi.org/10.1007/BF02692457
  24. Lee, D.H., Lee, J.U., Jung, S.J., Baek, S.H., Kim, J.H., Kim, D.I., Hyun, D.B. and Kim, J.S. (2014), "Effect of heat treatment on the thermoelectric properties of Bismuth-Antimony-Telluride prepared by mechanical deformation and mechanical alloying", J. Electron. Mater., 43, 2255-2261. https://doi.org/10.1007/s11664-014-3037-1
  25. Liu, H., Chen, Y., Tang, Y., Wei, S. and Niu, G. (2007), "The microstructure, tensile properties and creep behaviour of as-cast Mg-(1-10) %Sn alloys", J. Alloys Compd., 440(1-2), 122-126. https://doi.org/10.1016/j.jallcom.2006.09.024
  26. Lu, H., Wang, C.A., Huang, Y. and Xie, H. (2014), "Multi-Enhanced-Phonon Scattering Modes in Ln-Me-A Sites co-substituted LnMeA11O19 Ceramics", Sci. Rep., 4, 6823. https://doi.org/10.1038/srep06823
  27. Macario, L.R., Cheng, X., Ramirez, D., Mori, T. and Kleinke, H. (2018), "Thermoelectric properties of Bidoped magnesium silicide stannides", ACS Appl. Mater. Inter., 10(47), 40585-40591. https://doi.org/10.1021/acsami.8b15111
  28. Mark, B. (2013), "Remarkable magnesium: the 21st century structural alloy for small components", FisherCast Global Corporation.
  29. Mezbahul-Islam, M., Mostafa, A.O. and Medraj, M. (2014), "Essential magnesium alloys binary phase diagrams and their thermochemical data", J. Mater., 2014, 1-33. https://doi.org/10.1155/2014/704283
  30. Minnich, A.J., Dresselhaus, M.S., Ren, Z.F. and Chen, G. (2009), "Bulk nanostructured thermoelectric materials: current research and future prospects", Energy Environ. Sci., 2(5), 466-479. https://doi.org/10.1039/B822664B
  31. Ray, R.K. and Jonas, J.J. (1990), "Transformation textures in steels", Int. Mater. Rev. 35(1), 1-36. https://doi.org/10.1179/095066090790324046
  32. Rowe, D.M. (1995), CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, Florida, United States.
  33. Sahoo, S.K., Sabat, R.K., Panda, S., Mishra, S.C. and Suwas S. (2015), "Mechanical property of pure magnesium: from orientation perspective pertaining to deviation from basal orientation", J. Mater. Eng. Perf., 24(6), 2346-2353. https://doi.org/10.1007/s11665-015-1522-1
  34. Santos, R., Yamini, S.A. and Dou, S.X. (2018), "Recent progress in magnesium-based thermoelectric materials", J. Mater. Chem. A, 6(8), 3328-3341. https://doi.org/10.1039/C7TA10415D
  35. Shakouri, A. (2011), "Recent developments in semiconductor thermoelectric physics and materials", Annu. Rev. Mater. Res., 41, 399-431. https://doi.org/10.1146/annurev-matsci-062910-100445
  36. Snyder, G.J. and Toberer, E.S. (2008), "Complex thermoelectric materials", Nat. Mater., 7, 101-110. https://doi.org/10.1142/9789814317665_0016
  37. Thiagarajan, S.J., Wang, W. and Yang, R. (2010), "Nanocomposites as high efficiency thermo- electric materials", Annual Review of Nano Research. World Scientific, Boulder, CO, USA.
  38. Tritt, T.M. (2002), "Thermoelectric Materials: Principles, Structure, Properties, and Applications", In: Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., 1-11.
  39. Tritt, T.M. (2004), Thermal conductivity theory, properties, and applications, Springer, New York, USA.
  40. Tritt, T.M. and Subramanian, M.A. (2006), "Thermoelectric materials, phenomena, and applications: a bird's eye view", MRS Bull., 31(3), 188-229. https://doi.org/10.1557/mrs2006.44
  41. Viennois, R., Colinet, C., Jund, P. and Tedenac, J.C. (2012), "Phase stability of ternary antifluorite type compounds in the quasi binary systems $Mg_2X-Mg_2Y$ (X, Y = Si, Ge, Sn) via ab-initio calculations", Intermetallics, 12, 145-151. https://doi.org/10.1016/j.intermet.2012.06.016
  42. Wang, S., Yang, J., Toll, T., Yang, J., Zhang, W. and Tang, X. (2015), "Conductivity-limiting bipolar thermal conductivity in semiconductors", Sci. Rep., 5, 10136. https://doi.org/10.1038/srep10136
  43. Xu, Z.J., Hu, L.P., Ying, P.J., Zhao, X.B. and Zhu, T.J. (2015), "Enhanced thermoelectric and mechanical properties of zone melted p-type $(Bi,Sb)_2Te_3$ thermoelectric materials by hot deformation", Acta Mater., 84, 385-392. https://doi.org/10.1016/j.actamat.2014.10.062
  44. Zheng, J.C. (2008), "Recent advances on thermoelectric materials", Front. Phys. China, 3, 269-279. https://doi.org/10.1007/s11467-008-0028-9