DOI QR코드

DOI QR Code

Effects of Low-Level Visual Attributes on Threat Detection: Testing the Snake Detection Theory

저수준 시각적 특질이 위협 탐지에 미치는 효과: 뱀 탐지 이론의 검증

  • Received : 2020.07.25
  • Accepted : 2020.09.06
  • Published : 2020.09.30

Abstract

The snake detection theory posits that, due to competition with snakes, the primate visual system has been evolved to detect camouflaged snakes. Specifically, one of its hypotheses states that the subcortical visual pathway mainly consisting of koniocellular cells enables humans to automatically detect the threat of snakes without consuming mental resources. Here we tested the hypothesis by comparing human participants' responses to snakes with those to fearful faces and flowers. Participants viewed either original images or converted ones, which lacked the differences in color, luminance, contrast, and spatial frequency energies between categories. While participants in Experiment 1 produced valence and arousal ratings to each image, those in Experiment 2 detected target images in the breaking continuous flash suppression (bCFS) paradigm. As a result, visual factors influenced the responses to snakes most strongly. After minimizing visual differences, snakes were rated as being less negative and less arousing, and detected more slowly from suppression. In contrast, the images of the other categories were less affected by image conversion. In particular, fearful faces were rated as greater threats and detected more quickly than other categories. In addition, for snakes, changes in arousal ratings and those in bCFS response times were negatively correlated: Those snake images, the arousal ratings of which decreased, produced increased detection latency. These findings suggest that the influence of snakes on human responses to threat is limited relative to fearful faces, and that detection responses in bCFS share common processing mechanisms with conscious ratings. In conclusion, the current study calls into question the assumption that snake detection in humans is a product of unconscious subcortical visual processing.

뱀 탐지 이론은 영장류가 천적인 뱀과 경쟁하면서 뱀을 효과적으로 탐지할 수 있는 시각 체계를 갖추게 되었다고 설명한다. 구체적인 가설 중 하나는 먼지세포 중심의 피질하 시각 경로가 사람으로 하여금 심적 자원을 사용하지 않고서도 자동적으로 뱀의 위협을 탐지할 수 있게 한다는 것이다. 이에 본 연구는 뱀 영상에 대한 인간 참가자의 반응을 공포 표정의 얼굴 및 꽃에 대한 반응과 비교함으로써 뱀 탐지 이론의 가정들을 검토하였다. 참가자들은 원본 영상을 관찰하거나, 원본 영상에서 색상, 밝기와 대비, 공간주파수 에너지 차이를 제거한 변환 영상을 관찰하였다. 실험 1의 참가자들은 각 영상에 대한 정서가와 각성 유발 정도를 평정하였고, 실험 2의 참가자들은 연속점멸억제 절차에서 표적 자극을 탐지하였다. 그 결과, 뱀에 대한 반응은 시각 요인의 영향을 가장 크게 받았다. 영상들의 시각적 차이를 제거했을 때, 뱀 영상은 덜 부정적이고 각성을 덜 유발하며 연속점멸억제에서 느리게 탈출하였다. 그에 비해, 다른 범주에 대한 반응은 영상 변환의 영향을 덜 받았다. 특히, 공포 표정의 얼굴은 일관적으로 영상 조건에 상관없이 위협적인 대상으로 평정되었으며 빠르게 탐지되었다. 또한, 실험 1에서 측정한 각성 평정의 변화량과 실험 2에서 측정한 연속점멸억제 탈출 시간의 변화량이 부적 상관을 보였다. 영상 변환 후 각성 평정 점수가 많이 감소한 뱀 영상일수록 탐지반응시간이 증가하였다. 이러한 결과는 뱀이 인간 관찰자의 위협 탐지 반응에 미치는 영향이 공포 표정의 얼굴에 비해 제한적이며, 연속점멸억제 탈출 반응과 의식적 평정 반응이 처리 기제를 공유할 가능성을 시사한다. 결론적으로 본 연구는 인간의 뱀 탐지가 무의식적 피질하 시각 경로의 산물이라는 가정에 의문을 제기한다.

Keywords

References

  1. Alter, A. L., & Oppenheimer, D. M. (2009). Uniting the tribes of fluency to form a metacognitive nation. Personality and Social Psychology Review, 13(3), 219-235. DOI: 10.1177/1088868309341564
  2. Amaral, D. G., Price, J. L., Pitkanen, A., & Carmichael, S. T. (1992). Anatomical organization of the primate amygdaloid complex. In J. P. Aggleton (Ed.), The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction (pp. 1-66). New York: Wiley-Liss. DOI: 10.1016/0166-2236(92)90106-i
  3. Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390-412. DOI: 10.1016/j.jml.2007.12.005
  4. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. DOI: 10.18637/jss.v067.i01
  5. Beligiannis, N., & Van Strien, J. W. (2019). Blurring attenuates the early posterior negativity in response to snake stimuli. International Journal of Psychophysiology, 146, 201-207. DOI: 10.1016/j.ijpsycho.2019.09.002
  6. Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436. DOI: 10.1163/156856897x00357
  7. Brewer, G. (2001, March 19). Snakes Top List of Americans' Fears. Gallup. https://news.gallup.com/poll/1891/snakes-top-list-americans-fears.aspx
  8. Cook, M., & Mineka, S. (1990). Selective associations in the observational conditioning of fear in rhesus monkeys. Journal of Experimental Psychology: Animal Behavior Processes, 16(4), 372-389. DOI: 10.1037/0097-7403.16.4.372
  9. Davey, G. C. L. (1994). Self‐reported fears to common indigenous animals in an adult UK population: The role of disgust sensitivity. British Journal of Psychology, 85(4), 541-554. DOI: 10.1111/j.2044-8295.1994.tb02540.x
  10. Eimer, M. (2000). Effects of face inversion on the structural encoding and recognition of faces: Evidence from event-related brain potentials. Brain Research: Cognitive Brain Research, 10(1-2), 145-158. DOI: 10.1016/s0926-6410(00)00038-0
  11. Fredrikson, M., Annas, P., & Wik, G. (1997). Parental history, aversive exposure and the development of snake and spider phobia in women. Behaviour Research and Therapy, 35(1), 23-28. DOI: 10.1016/s0005-7967(96)00076-9
  12. Gayet, S., Stein, T., & Peelen, M. V. (2019). The danger of interpreting detection differences between image categories: A brief comment on "Mind the snake: Fear detection relies on low spatial frequencies" (Gomes, Soares, Silva, & Silva, 2018). Emotion, 19(5), 928-932. DOI: 10.1037/emo0000550
  13. Gayet, S., Van der Stigchel, S., & Paffen, C. L. E. (2014). Breaking continuous flash suppression: Competing for consciousness on the pre-semantic battlefield. Frontiers in Psychology, 5, 460. DOI: 10.3389/fpsyg.2014.00460
  14. Gomes, N., Silva, S., Silva, C. F., & Soares, S. C. (2017). Beware the serpent: The advantage of ecologicallyrelevant stimuli in accessing visual awareness. Evolution and Human Behavior, 38(2), 227-234. DOI: 10.1016/j.evolhumbehav.2016.10.004
  15. Gomes, N., Soares, S. C., Silva, S., & Silva, C. F. (2018). Mind the snake: Fear detection relies on low spatial frequencies. Emotion, 18(6), 886-895. DOI: 10.1037/emo0000391
  16. Goren, C. C., Sarty, M., & Wu, P. Y. (1975). Visual following and pattern discrimination of face-like stimuli by newborn infants. Pediatrics, 56(4), 544-549.
  17. Grassini, S., Holm, S. K., Railo, H., & Koivisto, M. (2016). Who is afraid of the invisible snake? Subjective visual awareness modulates posterior brain activity for evolutionarily threatening stimuli. Biological Psychology, 121(Pt A), 53-61. DOI: 10.1016/j.biopsycho.2016.10.007
  18. Gray, K. L. H., Adams, W. J., Hedger, N., Newton, K. E., & Garner, M. (2013). Faces and awareness: Lowlevel, not emotional factors determine perceptual dominance. Emotion, 13(3), 537-544. DOI: 10.1037/a0031403
  19. Hayakawa, S., Kawai, N., & Masataka, N. (2011). The influence of color on snake detection in visual search in human children. Scientific Reports, 1, 80. DOI: 10.1038/srep00080
  20. Hedger, N., Adams, W. J., & Garner, M. (2015). Autonomic arousal and attentional orienting to visual threat are predicted by awareness. Journal of Experimental Psychology: Human Perception and Performance, 41(3), 798-806. DOI: 10.1037/xhp0000051
  21. Hedger, N., Gray, K. L. H., Garner, M., & Adams, W. J. (2016). Are visual threats prioritized without awareness? A critical review and meta-analysis involving 3 behavioral paradigms and 2696 observers. Psychological Bulletin, 142(9), 934-968. DOI: 10.1037/bul0000054
  22. He, H., Kubo, K., & Kawai, N. (2014). Spiders do not evoke greater early posterior negativity in the eventrelated potential as snakes. NeuroReport, 25(13), 1049-1053. DOI: 10.1097/wnr.0000000000000227
  23. Hendry, S. H., & Reid, R. C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience, 23, 127-153. DOI: 10.1146/annurev.neuro.23.1.127
  24. Hendry, S. H., & Yoshioka, T. (1994). A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. Science, 264(5158), 575-577. DOI: 10.1126/science.8160015
  25. Isbell, L. A. (2006). Snakes as agents of evolutionary change in primate brains. Journal of Human Evolution, 51(1), 1-35. DOI: 10.1016/j.jhevol.2005.12.012
  26. Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434-446. DOI: 10.1016/j.jml.2007.11.007
  27. Jiang, Y., Costello, P., & He, S. (2007). Processing of invisible stimuli: Advantage of upright faces and recognizable words in overcoming interocular suppression. Psychological Science, 18(4), 349-355. DOI: 10.1111/j.1467-9280.2007.01902.x
  28. Johnson, M. H., Dziurawiec, S., Ellis, H., & Morton, J. (1991). Newborns' preferential tracking of face-like stimuli and its subsequent decline. Cognition, 40(1-2), 1-19. DOI: 10.1016/0010-0277(91)90045-6
  29. Ju, E. J. (2014). Pre-service elementary teacher’s specific animal phobia and its relationship to biology teaching self-efficacy. Biology Education, 42(3), 237-248. DOI: 10.15717/bioedu.2014.42.3.237
  30. Keil, A., & Ihssen, N. (2004). Identification facilitation for emotionally arousing verbs during the attentional blink. Emotion, 4(1), 23-35. DOI: 10.1037/1528-3542.4.1.23
  31. Kim, S.-Y., Jung, J.-B., & Nam, K.-C. N. (2020). Research on the association between emotional perception bias and deteriorated visuospatial attention allocation ability in increasing the level of social phobia. Science of Emotion & Sensibility, 23(2), 35-50. DOI: 10.14695/KJSOS.2020.23.2.35
  32. Lamme, V. A., & Roelfsema, P. R. (2000). The distinct modes of vision offered by feedforward and recurrent processing. Trends in Neurosciences, 23(11), 571-579. DOI: 10.1016/s0166-2236(00)01657-x
  33. Langton, S. R. H., Law, A. S., Burton, A. M., & Schweinberger, S. R. (2008). Attention capture by faces. Cognition, 107(1), 330-342. DOI: 10.1016/j.cognition.2007.07.012
  34. Lenth, R. (2020). emmeans: Estimated Marginal Means, aka Least-Squares Means. https://CRAN.R-project.org/package=emmeans
  35. LoBue, V., Buss, K. A., Taber-Thomas, B. C., & Pérez- Edgar, K. (2017). Developmental differences in infants’ attention to social and nonsocial threats. Infancy, 22(3), 403-415. DOI: 10.1111/infa.12167
  36. Lobue, V., & DeLoache, J. S. (2008). Detecting the snake in the grass: Attention to fear-relevant stimuli by adults and young children. Psychological Science, 19(3), 284-289. DOI: 10.1111/j.1467-9280.2008.02081.x
  37. Maior, R. S., Hori, E., Tomaz, C., Ono, T., & Nishijo, H. (2010). The monkey pulvinar neurons differentially respond to emotional expressions of human faces. Behavioural Brain Research, 215(1), 129-135. DOI: 10.1016/j.bbr.2010.07.009
  38. Miles, W. R. (1930). Ocular dominance in human adults. The Journal of General Psychology, 3(3), 412-430. DOI: 10.1080/00221309.1930.9918218
  39. Mineka, S., Keir, R., & Price, V. (1980). Fear of snakes in wild- and laboratory-reared rhesus monkeys (Macaca mulatta). Animal Learning & Behavior, 8(4), 653-663. DOI: 10.3758/BF03197783
  40. Moore, P. (2014, March 28). Snakes, heights and public speaking are the top three fears in the Home of the Brave. YouGov. https://today.yougov.com/topics/lifestyle/articles-reports/2014/03/27/argh-snakes
  41. Morris, J. S., Ohman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393(6684), 467-470. DOI: 10.1038/30976
  42. Nguyen, M. N., Matsumoto, J., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2014). Neuronal responses to face-like and facial stimuli in the monkey superior colliculus. Frontiers in Behavioral Neuroscience, 8, 85. DOI: 10.3389/fnbeh.2014.00085
  43. Ohman, A., Carlsson, K., Lundqvist, D., & Ingvar, M. (2007). On the unconscious subcortical origin of human fear. Physiology & Behavior, 92(1-2), 180-185. DOI: 10.1016/j.physbeh.2007.05.057
  44. Ohman, A., Flykt, A., & Esteves, F. (2001). Emotion drives attention: Detecting the snake in the grass. Journal of Experimental Psychology: General, 130 (3), 466-478. DOI: 10.1037/0096-3445.130.3.466
  45. Ohman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483-522. DOI: 10.1037/0033-295x.108.3.483
  46. Ohman, A., & Mineka, S. (2003). The malicious serpent: Snakes as a prototypical stimulus for an evolved module of fear. Current Directions in Psychological Science, 12(1), 5-9. DOI: 10.1111/1467-8721.01211
  47. Ohman, A., Soares, S. C., Juth, P., Lindström, B., & Esteves, F. (2012). Evolutionary derived modulations of attention to two common fear stimuli: Serpents and hostile humans. Journal of Cognitive Psychology, 24(1), 17-32. DOI: 10.1080/20445911.2011.629603
  48. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437-442. DOI: 10.1163/156856897x00366
  49. Pessoa, L., & Adolphs, R. (2010). Emotion processing and the amygdala: From a "low road" to "many roads" of evaluating biological significance. Nature Reviews Neuroscience, 11(11), 773-782. DOI: 10.1038/nrn2920
  50. Pessoa, L., Japee, S., & Ungerleider, L. G. (2005). Visual awareness and the detection of fearful faces. Emotion, 5(2), 243-247. DOI: 10.1037/1528-3542.5.2.243
  51. Phelps, E. A., & LeDoux, J. E. (2005). Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48(2), 175-187. DOI: 10.1016/j.neuron.2005.09.025
  52. Polak, J., Radlova, S., Janovcova, M., Flegr, J., Landova, E., & Frynta, D. (2020). Scary and nasty beasts: Self-reported fear and disgust of common phobic animals. British Journal of Psychology, 111(2), 297-321. DOI: 10.1111/bjop.12409
  53. Rakison, D. H. (2018). Do 5-month-old infants possess an evolved detection mechanism for snakes, sharks, and rodents? Journal of Cognition and Development, 19(4), 456-476. DOI: 10.1080/15248372.2018.1488717
  54. R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/
  55. Roth, H. L., Lora, A. N., & Heilman, K. M. (2002). Effects of monocular viewing and eye dominance on spatial attention. Brain, 125(Pt 9), 2023-2035. DOI: 10.1093/brain/awf210
  56. Russell, J. A., & Barrett, L. F. (1999). Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. Journal of Personality and Social Psychology, 76(5), 805-819. DOI: 10.1037/0022-3514.76.5.805
  57. Schupp, H. T., Flaisch, T., Stockburger, J., & Junghöfer, M. (2006). Emotion and attention: Event-related brain potential studies. Progress in Brain Research, 156, 31-51. DOI: 10.1016/s0079-6123(06)56002-9
  58. Sheth, B. R., & Pham, T. (2008). How emotional arousal and valence influcence access to awareness, Vision Research, 48(23-24), 2415-2424. DOI: 10.1016/j.visres.2008.07.013
  59. Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S. (2020). afex: Analysis of Factorial Experiments. https://CRAN.R-project.org/package=afex
  60. Soares, S. C., Lindström, B., Esteves, F., & Ohman, A. (2014). The hidden snake in the grass: Superior detection of snakes in challenging attentional conditions. PloS One, 9(12), e114724. DOI: 10.1371/journal.pone.0114724
  61. Sohn, I.-J., Yoon, H.-J., Shin, Y.-B., & Kim, J.-J. (2014). Behavioral characteristics of face recognition for self and others in patients with social phobia. Anxiety and Mood, 10(1), 37-43.
  62. Stein, T., Seymour, K., Hebart, M. N., & Sterzer, P. (2014). Rapid fear detection relies on high spatial frequencies. Psychological Science, 25(2), 566-574. DOI: 10.1177/0956797613512509
  63. Tamietto, M., & de Gelder, B. (2010). Neural bases of the non-conscious perception of emotional signals. Nature Reviews Neuroscience, 11(10), 697-709. DOI: 10.1038/nrn2889
  64. Theeuwes, J., & Van der Stigchel, S. (2006). Faces capture attention: Evidence from inhibition of return. Visual Cognition, 13(6), 657-665. DOI: 10.1080/13506280500410949
  65. Tottenham, N., Tanaka, J. W., Leon, A. C., McCarry, T., Nurse, M., Hare, T. A., Marcus, D. J., Westerlund, A., Casey, B. J., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242-249. DOI: 10.1016/j.psychres.2008.05.006
  66. Troiani, V., & Schultz, R. T. (2013). Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Frontiers in Human Neuroscience, 7, 241. DOI: 10.3389/fnhum.2013.00241
  67. Tsuchiya, N., & Koch, C. (2005). Continuous flash suppression reduces negative afterimages. Nature Neuroscience, 8(8), 1096-1101. DOI: 10.1038/nn1500
  68. Tsuchiya, N., Moradi, F., Felsen, C., Yamazaki, M., & Adolphs, R. (2009). Intact rapid detection of fearful faces in the absence of the amygdala. Nature Neuroscience, 12(10), 1224-1225. DOI: 10.1038/nn.2380
  69. Van Le, Q., Isbell, L. A., Matsumoto, J., Nguyen, M., Hori, E., Maior, R. S., Tomaz, C., Tran, A. H., Ono, T., & Nishijo, H. (2013). Pulvinar neurons reveal neurobiological evidence of past selection for rapid detection of snakes. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 19000-19005. DOI: 10.1073/pnas.1312648110
  70. Van Strien, J. W., Eijlers, R., Franken, I. H. A., & Huijding, J. (2014). Snake pictures draw more early attention than spider pictures in non-phobic women: Evidence from event-related brain potentials. Biological Psychology, 96, 150-157. DOI: 10.1016/j.biopsycho.2013.12.014
  71. Van Strien, J. W., Franken, I. H. A., & Huijding, J. (2014). Testing the snake-detection hypothesis: Larger early posterior negativity in humans to pictures of snakes than to pictures of other reptiles, spiders and slugs. Frontiers in Human Neuroscience, 8, 691. DOI: 10.3389/fnhum.2014.00691
  72. Van Strien, J. W., & Isbell, L. A. (2017). Snake scales, partial exposure, and the Snake Detection Theory: A human event-related potentials study. Scientific Reports, 7, 46331. DOI: 10.1038/srep46331
  73. Vlamings, P. H. J. M., Goffaux, V., & Kemner, C. (2009). Is the early modulation of brain activity by fearful facial expressions primarily mediated by coarse low spatial frequency information? Journal of Vision, 9(5), 12.1-13. DOI: 10.1167/9.5.12
  74. Whalen, P. J., Rauch, S. L., Etcoff, N. L., McInerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. The Journal of Neuroscience, 18(1), 411-418. DOI: 10.1523/jneurosci.18-01-00411.1998
  75. Willenbockel, V., Sadr, J., Fiset, D., Horne, G. O., Gosselin, F., & Tanaka, J. W. (2010). Controlling low-level image properties: the SHINE toolbox. Behavior Research Methods, 42(3), 671-684. DOI: 10.3758/BRM.42.3.671
  76. Winston, J. S., Vuilleumier, P., & Dolan, R. J. (2003). Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Current Biology, 13(20), 1824-1829. DOI: 10.1016/j.cub.2003.09.038
  77. Yang, E., Zald, D. H., & Blake, R. (2007). Fearful expressions gain preferential access to awareness during continuous flash suppression. Emotion, 7(4), 882-886. DOI: 10.1037/1528-3542.7.4.882