DOI QR코드

DOI QR Code

Evaluation the Impact of Installing a Isolation Valve on Condensate System of Nuclear Power Plan

원자력발전소 복수기 수실 차단밸브 설치 영향 평가

  • Lee, Sun-Ki (Dept. of Energy Mechanical System, DongShin University)
  • 이선기 (동신대학교 에너지기계설비전공)
  • Received : 2020.06.16
  • Accepted : 2020.08.21
  • Published : 2020.08.31

Abstract

Because there are no isolation valves in condensate system of nuclear power plants, circulating water pump was shutdown for the condenser repair. When circulating water pump was shutdown, power plant output decreased about 45%. These output decreasing can minimize by establishing isolation valves. In this paper, evaluated effect to flow conditions change of condensate system, structural integrity of system, condenser pressure of in case of establish isolation valves to condensate system. Results of the evaluation, the flow rate due to the installation of the isolation valve decreased 0.3% when the valve was fully opened and 4.5% when fully closed. In addition, it was found that the vacuum degree of the condenser decreased with decreasing flow rate, but the integrity of the system was maintained.

원자력발전소의 순환수 계통 해수배관에 차단밸브가 설치되어 있지 않을 경우 복수기 내부 세관(튜브)에서 해수 누설 등의 이상 발생시, 정비 및 보수를 위해 최소한 순환수 펌프 1대를 정지하여야 하며, 최악의 경우에는 발전정지를 하여야 한다. 그러나 순환수 계통 해수배관에 차단밸브를 설치할 경우, 복수기 이상 발생 시 병열로 연결된 복수기의 해당 수실만 차단 가능함으로 발전소 출력 손실을 최소화 할 수 있다. 본 논문에서는 원자력발전소 순환수 계통의 복수기 수실에 차단밸브를 설치할 경우, 순환수 계통의 유량변화, 계통의 구조적 건전성, 복수기 진공도에의 영향을 평가하였다. 평가결과, 복수기 수실 차단밸브 설치에 따른 유량은 밸브 완전 개방시 0.3% 감소하며, 완전 잠금시에는 4.5% 감소하였다. 또한 유량감소에 따라 복수기 진공도는 떨어지나 계통의 건전성은 유지됨을 알았다.

Keywords

References

  1. Wieghardt, K. E. G., Aeronaut. Q(1953), pp186. https://doi.org/10.1017/S0001925900000871
  2. LE. Idelechik and Erwin Fried, Flow Resistance, Taylor & Francis, 1989 https://doi.org/10.1201/9780203755754
  3. FLOWMASTER Code. Ver 3.0, 2006. http://www.flowsystem.co.kr
  4. Standards for Steam Surface Condenser, Heat Exchange Institute, Vol. 9. http://www.techstreet.com
  5. ASME B31.1, 1992 Edition, Power Piping. https://doi.org/10.1115/1.861981
  6. ANSYS 10.0 Reference Users Manual. http://www.ansys.com
  7. ASME Boiler and Pressure Vessel Code, Section II, Part D, 1998 Edition, 1998 Addenda. http://www.asme.org/asme-bpvc-brochurewebview.pdf
  8. ASME Boiler and Pressure Vessel Code, Section VIII, Div 1, 1998 Edition, 1998 Addenda. http://www.asme.org/asme-bpvc-brochurewebview.pdf
  9. EPRI CS 3844, Condenser Procurement Guidelines, 1985. http://www.epri.com
  10. D. H. Lee. (2008) Degradation Characteristics of Pumps in Nuclear Power Plants, The Korean Society for Noise and Vibration Engineering, Spring Conference, 593-598.
  11. Y. K. Chang & W. S. Song, (2012) A Study on the Pump Performance Analysis by Modifying the Impeller for a Seawater Pump using CFD, Trans. of the KPVP, 8(3), 23-27. DOI : 10.20466/KPVP.2012.8.3.023
  12. M. W. Heo & J. H. Min, (2017) Consideration of Pressure-Rise and Water Hammer for Pipe System in Rwlation to Start-Up and Sudden Stop of the Pump, Trans. of the KPVP, 13(1), 69-74 DOI : 10.20466/KPVP.2017.13.1.069
  13. S. K. Lee. (2020) Evaluation of Performance according to Long Term Operation of Centrifugal Pump, J ournal of Power System Engineering, 24(2), 23-29. DOI : 10.9726/KSPSE.2020.24.2.023