DOI QR코드

DOI QR Code

Development of Structural Reliability Analysis Platform of FERUM-MIDAS for Reliability-Based Safety Evaluation of Bridges

신뢰도 기반 교량 안전성 평가를 위한 구조신뢰성 해석 플랫폼 FERUM-MIDAS의 개발

  • Lee, Seungjun (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Young-Joo (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 이승준 (울산과학기술원 도시환경공학과) ;
  • 이영주 (울산과학기술원 도시환경공학과)
  • Received : 2020.10.05
  • Accepted : 2020.11.06
  • Published : 2020.11.30

Abstract

The collapse of bridges can cause massive casualties and economic losses. Therefore, it is thus essential to evaluate the structural safety of bridges. For this task, structural reliability analysis, considering various bridge-related uncertainty factors, is often used. This paper proposes a new computational platform to perform structural reliability analysis for bridges and evaluate their structural safety under various loading conditions. For this purpose, a software package of reliability analysis, Finite Element Reliability Using MATLAB (FERUM), was integrated with MIDAS/CIVIL, which is a widely-used commercial software package specialized for bridges. Furthermore, a graphical user interface (GUI) control module has been added to FERUM to overcome the limitations of software operation. In this study, the proposed platform was applied to a simple frame structure, and the analysis results of the FORM (First-Order Reliability Method) and MCS (Monte Carlo simulation), which are representative reliability analysis methods, were compared. The proposed platform was verified by confirming that the calculated failure probability difference was less than 5%. In addition, the structural safety of a pre-stressed concrete (PSC) bridge was evaluated considering the KL-510 vehicle model. The proposed new structural reliability analysis platform is expected to enable an effective reliability-based safety evaluation of bridges.

교량은 현대 사회에서 중요한 사회기반시설물 중에 하나로 교량의 붕괴는 막대한 인명 피해와 경제적 손실을 일으킬 수 있다. 따라서 교량의 구조적 안전성을 평가하는 것은 매우 중요하며, 이를 위해 교량을 둘러싼 여러 종류의 불확실성 요인들을 고려하는 구조신뢰성 해석이 흔히 사용된다. 본 연구에서는 다양한 하중 조건에서 교량의 안전성을 평가하기 위한 새로운 구조신뢰성 해석 플랫폼을 제안한다. 제안 플랫폼 FERUM-MIDAS는 신뢰성 해석 소프트웨어인 Finite Element Reliability Using MATLAB(FERUM)과 교량 설계/해석에 특화된 상용 소프트웨어인 MIDAS/CIVIL을 연결하여, 자동적인 입출력 데이터 교환을 통해서 구조신뢰성 해석을 수행한다. 나아가 MIDAS/CIVIL의 그래픽 사용자 인터페이스로만 소프트웨어 구동이 가능한 한계점을 극복하기 위하여 FERUM에 별도의 그래픽 사용자 인터페이스 제어 모듈을 추가하였다. 본 연구에서는 제안 플랫폼을 간단한 프레임 예제에 적용하여 대표적인 신뢰성 해석 방법인 FORM(First-Order Reliability Method)과 MCS(Monte Carlo simulation)의 해석 결과를 비교·분석하였으며, 계산된 파괴확률 차이가 5% 미만인 것을 확인하여 제안 플랫폼의 검증을 완료하였다. 이와 더불어 개발된 플랫폼을 활용하여 KL-510 활하중 모델을 고려한 프리스트레스트 콘크리트(pre-stressed concrete, PSC)교의 파괴확률과 신뢰도 지수를 도출하고, 그 결과를 분석하여 교량의 구조적 안전성을 평가하였다. 본 연구에서 제안한 새로운 구조신뢰성 해석 플랫폼을 통해 교량의 효과적인 신뢰도 기반 안전성 평가가 가능할 것으로 기대된다.

Keywords

References

  1. Y. S. Yang, Y. S. Seo, J. O. Lee, Structural Reliability Engineering, p.448, Seoul National University Press, 1999.
  2. T. Haukaas, Finite element reliability and sensitivity methods for performance-based engineering, Ph.D dissertation, University of California, Berkeley, CA, USA, pp.85-133, 2003.
  3. A. Der Kiureghian and R.L. Taylor, "Numerical methods in structural reliability", Proc. Fourth International Conference on Applications of Statistics and Probability in Soil and Structural Engineering, Florence, Italy, pp. 769-784 June, 1983.
  4. P.L. Liu, H.Z. Lin, A. Der Kiureghian, CalREL User Manual, Report No. UCB/SEMM-89/18, University of California, Berkeley, CA, USA, 1989.
  5. T. Haukaas, A. Hahnel, B. Sudret, J. Song, and P. Franchin, FERUM, Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA, 2003 [cited 2020 Sep. 23], Available From: http://projects.ce.berkeley.edu/ferum/
  6. SwRI. NESSUS (ver 9.6), Southwest Reserch Institute, 2011 [cited 2020 Sep. 23], Available From: http://www.nessus.swri.org
  7. Y.-J. Lee, J. Song and E.J. Tuegel, "Finite element system reliability analysis of a wing torque box", Proc. of the 10th AIAA Nondeterministic Approaches Conference, Schaumburg, IL, April, 2008. DOI : https://doi.org/10.2514/6.2008-1718
  8. W.H. Kang, Y.-J. Lee, J. Song and B. Gencturk, "Further development of matrix-based system reliability method and applications to structural systems", Struct. Infrastruct. E., Vol.8, No.5, pp. 441-457, 2012. https://doi.org/10.1080/15732479.2010.539060
  9. H. Kim and S.-H. Sim, "Flood fragility analysis of bridge piers in consideration of debris impacts", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.5, pp.325-331, 2016. DOI: http://dx.doi.org/10.5762/KAIS.2016.17.5.325
  10. Y.-J. Lee, & D.-S. Moon, "A new methodology of the development of seismic fragility curves", Smart Structures and Systems, Vol.14, No.5, 847-867, 2014. DOI: https://doi.org/10.12989/sss.2014.14.5.847
  11. D.-S. Moon, Y.-J. Lee, & S. Lee, "Fragility analysis of space reinforced concrete frame structures with structural irregularity in plan", Journal of Structural Engineering, Vol.144, No.8, 04018096, 2018. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0002092
  12. A. Der Kiureghian. Fisrt- and second-order reliability methods. chap.14, CRC press, Boca Raton, FL, USA, 2005.
  13. R. E. Melchers & A. T. Beck, Structural reliability analysis and prediction, p.528 John wiley & sons, 2018.
  14. A. Haldar, Recent developments in reliability-based civil engineering, p.277, World Scientific Publishing Company, Singapore, 2006.
  15. D.-H. Beak, Y. Seon, & C.-H. Lee, "Design and Implementation of Event Handling in AWT for Java Virtual Machine GUI", Proc. of the Korean Information Science Society Conference, Korea, April, pp.94-96, 2003.
  16. MLTM, Highway Bridge Design Code (Limit State Design Method), Korea Ministry of Land, Transportation and Maritime Affairs, Seoul, 2015.
  17. A.S. Nowak, Calibration of LRFD Bridge Design Code, NCHRP Report 368, Transportation Research Board, Washington D.C, pp.B1-B15, 1999.
  18. I.-Y. Paik, C.-S. Shim, Y.-S. Chung, and H.-J. Sang, "Statistical Properties of Material Strength of Concrete, Re-Bar and Strand Used in Domestic Construction Site," Journal of the Korea Concrete Institute, vol. 23, no. 4, pp. 421-430, Aug. 2011. DOI: https://doi.org/10.4334/JKCI.2011.23.4.421
  19. S. H. Lee, Calibration of the load-resistance factors for the reliability-based design of cable-supported bridges, Ph.D dissertation, Seoul National University, Seoul, Korea, pp.75-114, 2014.
  20. AASHTO, AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, 8th Edition, Washington, D.C., 2017.