DOI QR코드

DOI QR Code

Fracture properties and tensile strength of three typical sandstone materials under static and impact loads

  • Zhou, Lei (Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University) ;
  • Niu, Caoyuan (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University) ;
  • Zhu, Zheming (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University) ;
  • Ying, Peng (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University) ;
  • Dong, Yuqing (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University) ;
  • Deng, Shuai (State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University)
  • 투고 : 2019.10.24
  • 심사 : 2020.11.27
  • 발행 : 2020.12.10

초록

The failure behavior and tensile strength of sandstone materials under different strain rates are greatly different, especially under static loads and impact loads. In order to clearly investigate the failure mechanism of sandstone materials under static and impact loads, a series of Brazilian disc samples were used by employing green sandstone, red sandstone and black sandstone to carry out static and impact loading splitting tensile tests, and the failure properties subjected to two different loading conditions were analyzed and discussed. Subsequently, the failure behavior of sandstone materials also were simulated by finite element code. The good agreement between simulation results and experimental results can obtain the following significantly conclusions: (1) The relationship of the tensile strength among sandstone materials is that green sandstone < red sandstone < black sandstone, and the variation of the tensile sensitivity of sandstone materials is that green sandstone > red sandstone > black sandstone; (2) The mainly cause for the difference of dynamic tensile strength of sandstone materials is that the strength of crystal particles in sandstone material, and the tensile strength of sandstone is proportional to the fractal dimension; (3) The dynamic failure behavior of sandstone is greatly different from that of static failure behavior, and the dynamic tensile failure rate in dynamic failure behavior is about 54.92%.

키워드

과제정보

This work was financially supported by the National Natural Science Foundation of China (U19A2098); the project of Science and Technology of Sichuan province (21YYJC2845); Open fund of Key Laboratory of Deep Underground Science and Engineering (DESE202005); the Fundamental Research Funds for the Central Universities.

참고문헌

  1. Bahaaddini, M., Serati, M., Masoumi, H. and Rahimi, E. (2019), "Numerical assessment of rupture mechanisms in Brazilian test of brittle materials", Int. J. Solids Struct., 180, 1-12. https://doi.org/10.1016/j.ijsolstr.2019.07.004.
  2. Cheng, Y., Song, Z., Jin, J., Wang, T. and Yang, T. (2020), "Waveform characterization and energy dissipation of stress wave in sandstone based on modified SHPB tests", Geomech. Eng., 22(2), 187-196. https://doi.org/10.12989/gae.2020.22.2.187.
  3. Dumont, D., Deschamps, A. and Brechet, Y. (2004), "A model for predicting fracture mode and toughness in 7000 series aluminium alloys". Acta Mater., 52(9), 2529-2540. https://doi.org/10.1016/j.actamat.2004.01.044.
  4. Feng, J., Wang, E., Shen, R., Chen, L., Li, X. and Xu Z. (2016), "Investigation on energy dissipation and its mechanism of coal under dynamic loads", Geomech. Eng., 11(5), 657-670. https://doi.org/10.12989/gae.2016.11.5.657.
  5. Florio, B.J., Fawell, P.D. and Small, M. (2019), "The use of the perimeter-area method to calculate the fractal dimension of aggregates", Powder Technol., 343, 551-559. https://doi.org/10.1016/j.powtec.2018.11.030.
  6. Haeri, H., Shahriar, K., Marji, M.F. and Moarefvand P. (2014), "Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks", Int. J. Rock Mech. Min. Sci., 67, 20-28. https://doi.org/10.1016/j.ijrmms.2014.01.008.
  7. Hang, L., Wei, X. and Yan, Q. (2016), "Modified formula for the tensile strength as obtained by the flattened Brazilian disk test", Rock Mech. Rock Eng., 49(4), 1579-1586. https://doi.org/10.1007/s00603-015-0785-z.
  8. Hua, W., Dong, S., Fan, Y., Pan, X. and Wang, Q. (2017), "Investigation on the correlation of mode II fracture toughness of sandstone with tensile strength", Eng. Fract. Mech., 184, 249-258. https://doi.org/10.1016/j.engfracmech.2017.09.009.
  9. Huang, Y., Yang, S., Ju, Y., Zhou, X. and Zhao, J. (2016), "Study on particle size effects on strength and crack coalescence behavior of rock during Brazilian splitting test", J. Cent. South Univ., 47(4), 1272-1281. https://doi.org/10.11817/j.issn.1672-7207.2016.04.025.
  10. Huang, Y.G., Wang, L.G., Lu, Y.L., Chen, J.R. and Zhang, J.H. (2015), "Semi-analytical and numerical studies on the flattened brazilian splitting test used for measuring the indirect tensile strength of rocks", Rock Mech. Rock Eng., 48(5), 1849-1866. https://doi.org/10.1007/s00603-014-0676-8.
  11. ISRM (1978), "International society for rock mechanics commission on standardization of laboratory and field tests", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(6), 319-368. https://doi.org/10.1016/0148-9062(78)91472-9.
  12. Jiang, H., Du, C. and Liu, Z. (2017), "Theoretical and numerical investigation on rock fragmentation under high-pressure waterjet impact", Iran. J. Sci. Technol. T. Civ. Eng., 41(3), 305-315. https://doi.org/10.1007/s40996-017-0065-0.
  13. Jiang, H., Du, C., Liu, S. and Gao, K. (2014), "Numerical simulation of rock fragmentation under the impact load of water jet", Shock Vib., 1-11. http://doi.org/10.1155/2014/219489.
  14. Jin, X., Hou, C., Fan, X., Lu, C., Yang, H., Shu, X. and Wang, Z. (2017), "Quasi-static and dynamic experimental studies on the tensile strength and failure pattern of concrete and mortar discs", Sci. Rep., 7(1), 15305. https://doi.org/10.1038/s41598-017-15700-2.
  15. Li, D. and Wong, L.N.Y. (2013), "The Brazilian disc test for rock mechanics applications: review and new insights", Rock Mech. Rock Eng., 46(2), 269-287. https://doi.org/10.1007/s00603-012-0257-7.
  16. Li, D., Tao, W., Cheng, T. and Sun, X. (2016), "Static and dynamic tensile failure characteristics of rock based on splitting test of circular ring", T. Nonferr. Metal Soc., 26(7), 1912-1918. https://doi.org/10.1016/S1003-6326(16)64307-8.
  17. Li, H. and Wong, L.N.Y. (2012), "Influence of flaw inclination angle and loading condition on crack initiation and propagation", Int. J. Solids Struct., 49(18), 2482-2499. https://doi.org/10.1016/j.ijsolstr.2012.05.012.
  18. Liu, C., Deng, H., Zhao, H. and Zhang, J. (2018), "Effects of freeze-thaw treatment on the dynamic tensile strength of granite using the Brazilian test", Cold Reg. Sci. Technol., 155, 327-332. https://doi.org/10.1016/j.coldregions.2018.08.022.
  19. Liu, Q. and Sun, W. (2017), "A Hilbert-type fractal integral inequality and its applications", J. Inequal. Appl., (1), 1-8. https://doi.org/10.1186/s13660-017-1360-9.
  20. Lu, C., Sun, Q., Zhang, W., Geng, J., Qi, Y. and Lu, L. (2017), "The effect of high temperature on tensile strength of sandstone", Appl. Therm. Eng., 111, 573-579. https://doi.org/10.1016/j.applthermaleng.2016.09.151.
  21. Ma, T., Peng, N., Zhu, Z., Zhang, Q., Yang, C. and Zhao, J. (2018), "Brazilian tensile strength of anisotropic rocks: Review and new insights", Energies, 11(2), 1-25. https://doi.org/10.3390/en11020304.
  22. Mandelbrot, B. (1967), "How long is the coast of Britain? Statistical self-similarity and fractional dimension", Science, 156, 636-638. https://doi.org/10.1126/science.156.3775.636.
  23. Nezhad, M.M., Fisher, Q.J., Gironacci, E. and Rezania, M. (2018), "Experimental study and numerical modeling of fracture propagation in shale rocks during brazilian disk test", Rock Mech. Rock Eng., 51(6), 1755-1775. https://doi.org/10.1007/s00603-018-1429-x.
  24. Niu, L., Zhu, W., Cheng, Z., Guan, K. and Qin, T. (2017), "Numerical simulation on excavation-induced damage of rock under quasi-static unloading and dynamic disturbance", Environ. Earth Sci., 76, 613-627. https://doi.org/10.1007/s12665-017-6955-4.
  25. Rabal, H., Grumel, E., Cap, N., Buffarini, L. and Trivi, M. (2018), "A descriptor of speckle textures using box fractal dimension curve", Opt. Laser Eng., 106, 47-55. https://doi.org/10.1016/j.optlaseng.2018.02.006.
  26. Sarfarazi, V., Haeri, H., Marji, M.F. and Zhu, Z. (2017), "Fracture mechanism of brazilian discs with multiple parallel notches using PFC2D", Period Polytech. Civ., 61(4), 653-663. https://doi.org/10.3311/PPci.10310.
  27. Sheikh, M.Z., Wang, Z., Bing, D., Suo, T., Li, Y., Zhou, F., Wang, Y., Dar, U.A., Gao, G. and Wang, Y. (2019), "Static and dynamic brazilian disc tests for mechanical characterization of annealed and chemically strengthened glass", Ceram. Int., 45(6), 7931-7944. https://doi.org/10.1016/j.ceramint.2019.01.106.
  28. Tham, C.Y. (2005), "Reinforced concrete perforation and penetration simulation using AUTODYN-3D", Finite Elem. Anal. Des., 41(14), 1401-1410. https://doi.org/10.1016/j.finel.2004.08.003.
  29. Wang, M., Chen, Y., Ma, G., Zhou, J. and Zhou, C. (2016a), "Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations", Adv Water Resour., 96, 373-388 .https://doi.org/10.1016/j.advwatres.2016.08.006.
  30. Wang, M., Wang, F., Zhu, Z., Dong, Y., Mousavi Nezhad, M. and Zhou, L. (2019a), "Modelling of crack propagation in rocks under SHPB impacts using a damage method", Fatigue Fract. Eng. M., 42(8), 1699-1710. https://doi.org/10.1111/ffe.13012.
  31. Wang, M., Zhu, Z., Dong, Y. and Zhou, L. (2017), "Study of mixed-mode I/II fractures using single cleavage semicircle compression specimens under impacting loads", Eng. Fract. Mech., 177, 33-44. https://doi.org/10.1016/j.engfracmech.2017.03.042.
  32. Wang, Q., Feng, F., Ni, M. and Gou, X. (2011), "Measurement of mode I and mode II rock dynamic fracture toughness with cracked straight through flattened Brazilian disc impacted by split Hopkinson pressure bar", Eng. Fract. Mech., 78(12), 2455-2469. https://doi.org/10.1016/j.engfracmech.2011.06.004.
  33. Wang, Q., Yang, J., Zhang, C., Zhou, Y., Li, L., Zhu, Z. and Wu, L. (2015), "Sequential determination of dynamic initiation and propagation toughness of rock using an experimental-numerical-analytical method", Eng. Fract. Mech., 141, 78-94. https://doi.org/10.1016/j.engfracmech.2015.04.025.
  34. Wang, Q., Zhu, W., Xu, T., Niu, L. and Wei, J. (2016b), "Numerical simulation of rock creep behavior with a damagebased constitutive law", Int. J. Geomech., 17(1), 1-14. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000707.
  35. Wang, S.Y., Sloan, S.W., Sheng, D.C., Yang, S.Q. and Tang, C.A. (2014), "Numerical study of failure behaviour of pre-cracked rock specimens under conventional triaxial compression", Int. J. Solids Struct., 51(5), 1132-1148. https://doi.org/10.1016/j.ijsolstr.2013.12.012.
  36. Wang, T., Song, Z., Yang, J., Wang, J. and Zhang, X. (2019b), "Experimental research on dynamic response of red sandstone soil under impact loads", Geomech. Eng., 17(4), 393-403. http://doi.org/10.12989/gae.2019.17.4.393.
  37. Wang, Z., Shi, Y., Wang, J. and Zhang, Z. (2018), "Analysis of energy properties and failure modes of heat-treated granite in dynamic splitting test", Geotech. Test. J., 41(2), 235-246 .https://doi.org/10.1520/GTJ20170098.
  38. Wei, Y., Ying, X., Wei, W. and Patrick, K. (2016), "Dependence of dynamic tensile strength of Longyou sandstone on heattreatment temperature and loading rate", Rock Mech. Rock Eng., 49(10), 3899-3915.https://doi.org/10.1007/s00603-015-0895-7.
  39. Wong, L.N.Y. and Li, H.Q. (2013), "Numerical study on coalescence of two pre-existing coplanar flaws in rock", Int. J. Solids Struct., 50(22-23), 3685-3706. https://doi.org/10.1016/j.ijsolstr.2013.07.010.
  40. Wu, B., Yao, W. and Xia, K. (2016), "An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement", Rock Mech. Rock Eng., 49(10), 3855-3864. https://doi.org/10.1007/s00603-016-0946-8.
  41. Wu, F., Zhang, H., Zou, Q., Li, C., Chen, J. and Gao, R. (2020), "Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory", Mech. Mater., 150, 103600. https://doi.org/10.1016/j.mechmat.2020.103600.
  42. Wu, Q., Chen, L., Shen, B., Dlamini, B. and Zhu, Y. (2019), "Experimental investigation on rockbolt performance under the tension load", Rock Mech. Rock Eng., 52(11), 4605-4618. https://doi.org/10.1007/s00603-019-01845-1.
  43. Yang, S., Huang, Y. and Ranjith, P.G. (2018), "Failure mechanical and acoustic behavior of brine saturated-sandstone containing two pre-existing flaws under different confining pressures", Eng. Fract. Mech., 193, 108-121 .https://doi.org/10.1016/j.engfracmech.2018.02.021.
  44. Yang, W., Yu, C. and Kobayashi, A.S. (1991), "SEM quantification of transgranular vs intergranular fracture", J. Am. Ceram. Soc., 74(2), 290-295. https://doi.org/10.1111/j.1151-2916.1991.tb06877.x.
  45. Yi, L., Feng, D., Xu, N., Tao, Z. and Peng, F. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dyn. Earthq. Eng., 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025.
  46. Yin, T., Li, X., Cao, W. and Xia, K. (2015), "Effects of thermal treatment on tensile strength of laurentian granite using brazilian test", Rock Mech. Rock Eng., 48(6), 2213-2223. https://doi.org/10.1007/s00603-015-0712-3.
  47. Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", Int. J. Rock Mech. Min. Sci., 93, 54-65. https://doi.org/10.1016/j.ijrmms.2017.01.010.
  48. Zhang, Q.B. and Zhao, J. (2013), "Determination of mechanical properties and full-field strain measurements of rock material under dynamic loads", Int. J. Rock Mech. Min. Sci., 60, 423-439. https://doi.org/10.1016/j.ijrmms.2013.01.005.
  49. Zhang, Q.B. and Zhao, J. (2014), "Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms", Int. J. Fracture. 189(1), 1-32. https://doi.org/10.1007/s10704-014-9959-z.
  50. Zhang, Z., Xie, H., Zhang, R., Zhang, Z., Gao, M., Jia, Z. and Xie, J. (2018), "Damage and energy evolution characteristics of coal at different depths", Rock Mech. Rock Eng., 52(5), 1-13. https://doi.org/10.1007/s00603-018-1555-5.
  51. Zhao, J. and Li, H. (2000), "Experimental determination of dynamic tensile properties of a granite", Int. J. Rock Mech. Min. Sci., 37(5), 861-866. https://doi.org/10.1016/S1365-1609(00)00015-0.
  52. Zhou, L., Zhu, Z., Liu, B. and Fan, Y. (2018a), "The effect of radial cracks on tunnel stability", Geomech. Eng., 15(2), 721-728. https://doi.org/10.12989/gae.2018.15.2.721.
  53. Zhou, L., Zhu, Z., Qiu, H., Zhang, X. and Lang, L. (2018b), "Study of the effect of loading rates on crack propagation velocity and rock fracture toughness using cracked tunnel specimens", Int. J. Rock Mech. Min. Sci., 112, 25-34. https://doi.org/10.1016/j.ijrmms.2018.10.011.
  54. Zhou, Y.X., Xia, K., Li, X.B., Li, H.B., Ma, G.W., Zhao, J., Zhou, Z.L. and Dai, F. (2011), Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials, in The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, Cham, Switzerland, 35-44.
  55. Zhu, W.C., Niu, L.L., Li, S.H. and Xu, Z.H. (2015), "Brazilian test of rock under intermediate strain rate: Pendulum hammerdriven shpb test and numerical simulation", Rock Mech. Rock Eng., 48(5), 1867-1881. https://doi.org/10.1007/s00603-014-0677-7