DOI QR코드

DOI QR Code

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny (School of Civil Engineering, The University of Queensland) ;
  • Hidalgo, Juan P. (School of Civil Engineering, The University of Queensland) ;
  • Lange, David (School of Civil Engineering, The University of Queensland) ;
  • Cowlard, Adam (Torero, Abecassis Empis and Cowlard Ltd.) ;
  • Abecassis-Empis, Cecilia (Torero, Abecassis Empis and Cowlard Ltd.) ;
  • Torero, Jose L. (Department of Civil, Environmental & Geomatic Engineering, University College London)
  • Published : 2021.12.01

Abstract

Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

Keywords

Acknowledgement

This work is part of the EPSRC funded Real Fires for the Safe Design of Tall Buildings project (Grant: No. EP/J001937/1). Additional funding support was provided from the RFCS funded TRAFIR project (Grant No. 754198). We thank all those involved in the large-scale experiments that underpin this paper. In particular, we extend our thanks (in no particular order) to Dr Johan Sjostrom, Dr Stephen Welch, Dr Simo Hostikka, Dr Frantisek Wald and Dr Kamila Cabova for assistance in accessing older data sets. We are grateful to Prof. Bart Merci and Prof. Ali Rangwala for their comments on the first author's PhD thesis, which has helped improve this paper. We acknowledge helpful contributions from Ian Pope, Elhalm Saffari and Dr Felix Weisner regarding the data processing and presentation. The thoughts and concepts expressed in this paper have resulted from extensive discussions with numerous individuals over the years, to whom we are truly grateful.

References

  1. Abecassis-Empis, C., Reszka, P., Steinhaus, T., Cowlard, A., Biteau, H., Welch, S., Rein, G. and Torero, J. L. (2008). "Characterisation of Dalmarnock fire Test One", Exp. Therm. Fluid Sci., 32(7), 1334-1343. https://doi.org/10.1016/j.expthermflusci.2007.11.006
  2. Ahmadi, M. T., Aghakouchak, A. A., Shahmari, A., Modares, T., Mirghaderi, R., Tahouni, S., Garivani, S., Shahmari, A. and Epackachi, S. (2020). "Collapse of the 16-Story Plasco Building in Tehran due to Fire", Fire Technol., 56(2), 769-799. https://doi.org/10.1007/s10694-019-00903-y
  3. Alpert, R. L. (1972). "Calculation of response time of ceiling-mounted fire detectors", Fire Technol., 8(3), 181-195. https://doi.org/10.1007/BF02590543
  4. Alpert, R. L. (1975). "Turbulent ceiling-jet induced by large-scale fires", Combust. Sci. Technol., 11(5-6), 197-213. https://doi.org/10.1080/00102207508946699
  5. Behnam, B. (2019). "Fire Structural Response of the Plasco Building: A Preliminary Investigation Report", Int. J. Civ. Eng., 17(5), 563-580. https://doi.org/10.1007/s40999-018-0332-x
  6. Bergman, T. L., Lavine, A. S., Incropera, F. P. and DeWitt, D. P. (2011). Fundamentals of heat and mass transfer. 7th ed. Hoboken, NJ: Hoboken, NJ: Wiley.
  7. Charlier, M., Vassart, O., Dai, X., Welch, S., Sjostrom, J., Anderson, J. and Nadjai, A. (2020). "A simplified representation of travelling fire development in large compartment using CFD analyses", in Proc. 11th Int. Conf. Struct. Fire, 526-536.
  8. Clifton, C. G. (1996). Fire Models for Large Firecells.
  9. Cooke, G. M. E. (1998). Tests to Determine the Behaviour of Fully Developed Natural Fires.
  10. Council on Tall Buildings and Urban Habitat. (2021). CTBUH Year in Review : Tall Trends of 2020 Tall Buildings in 2020 : COVID-19 Contributes To Dip in Year-On-Year Completions.
  11. Cowlard, A., Bittern, A., Abecassis-empis, C. and Torero, J. L. (2013). "Some Considerations for the Fire Safe Design of Tall Buildings", Int. J. High-Rise Build., 2(1), 63-77.
  12. Dai, X., Welch, S. and Usmani, A. (2017). "A critical review of 'travelling fire' scenarios for performance-based structural engineering", Fire Saf. J., 91, 568-578. https://doi.org/10.1016/j.firesaf.2017.04.001
  13. Dai, X., Welch, S., Vassart, O., Cabova, K., Jiang, L., Maclean, J., Clifton, G. C. and Usmani, A. (2020). "An extended travelling fire method framework for performance-based structural design", Fire Mater., 44(3), 437-457. https://doi.org/10.1002/fam.2810
  14. Drysdale, D. (2011). An Introduction to Fire Dynamics. 3rd edn. Wiley.
  15. Engelhardt, M. D. M. D., Meacham, B., Kodur, V., Kirk, A., Park, H., Straalen;, van Straalen, I., Maljaars, J., van Weeren, K., De Feijter, R. and Both, K. (2013). "Observations from the Fire and Collapse of the Faculty of Architecture Building, Delft University of Technology", in Struct. Congr. 2013. ASCE Pittsburgh, 1-12.
  16. Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. (2002). EN 1991-1-2. CEN Brussels.
  17. Fernandez-Pello, A. C. and Hirano, T. (1983). "Controlling mechanisms of flame spread", Combust. Sci. Technol., 32(1-4), 1-31. https://doi.org/10.1080/00102208308923650
  18. Finney, M. A., Cohen, J. D., Forthofer, J. M., McAllister, S. S., Gollner, M. J., Gorham, D. J., Saito, K., Akafuah, N. K., Adam, B. A., English, J. D. and Dickinson, R. E. (2015). "Role of buoyant flame dynamics in wildfire spread", Proc. Natl. Acad. Sci. U. S. A., 112(32), 9833-9838.
  19. Fletcher, I. A. 1; Welch, S., Alvear, D., Lazaro, M., Capote, J. A. A., Alvear, ; and Lazaro, ; (2007). "Model-based analysis of a concrete building subjected to fire", in Proc. 4th Int. Work. Sructures Fire, 779-790. Available at: https://era.ed.ac.uk/handle/1842/1988.
  20. Gales, J. (2014). "Travelling Fires and the St. Lawrence Burns Project", Fire Technol., 50(6), 1535-1543. https://doi.org/10.1007/s10694-013-0372-3
  21. Gales, J., Chorlton, B. and Jeanneret, C. (2021). "The Historical Narrative of the Standard Temperature-Time Heating Curve for Structures", Fire Technol. Springer, 529-558.
  22. Gamba, A., Charlier, M. and Franssen, J.-M. (2020). "Propagation tests with uniformly distributed cellulosic fire load", Fire Saf. J., 117(103213), 1-11.
  23. Gann, R. G. (2005). Reconstruction of the fires in the world trade center towers, NIST NCSTAR.
  24. Gillie, M., Usmani, A., Rotter, M. and O'Connor, M. (2001). "Modelling of heated composite floor slabs with reference to the Cardington experiments", Fire Saf. J., 36(8), 745-767. https://doi.org/10.1016/S0379-7112(01)00038-8
  25. Gillie, M., Usmani, A. S. and Rotter, J. M. (2001). "A structural analysis of the first Cardington test", J. Constr. Steel Res., 57(6), 581-601. https://doi.org/10.1016/S0143-974X(01)00004-9
  26. Gross, D. and Robertson, A. F. (1965). "Experimental fires in enclosures", Symp. Combust., 10(1), 931-942. https://doi.org/10.1016/S0082-0784(65)80236-3
  27. Gupta, V. (2021). Open-plan compartment fire dynamics. The University of Queensland.
  28. Gupta, V., Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Majdalani, A. H., Maluk, C. and Torero, J. L. (2021). "Ventilation effects on the thermal characteristics of fire spread modes in open-plan compartment fires", Fire Saf. J., 120(103072), 1-9.
  29. Gupta, V., Maluk, C., Torero, J. L. and Hidalgo, J. P. (2019). "Analysis of Convective Heat Losses in a Full-scale Compartment Fire Experiment", in Proc. 9th Int. Semin. Fire Explos. Hazards, 490-501.
  30. Gupta, V., Osorio, A. F., Torero, J. L. and Hidalgo, J. P. (2020). "Mechanisms of flame spread and burnout in large enclosure fires", Proc. Combust. Inst., 38(3), 4525-4533.
  31. Gupta, V., Torero, J. L. and Hidalgo, J. P. (2021). "Burning dynamics and in-depth flame spread of wood cribs in large compartment fires", Combust. Flame, 228, 42-56. https://doi.org/10.1016/j.combustflame.2021.01.031
  32. Haggkvist, A., Sjostrom, J. and Wickstrom, U. (2013). "Using plate thermometer measurements to calculate incident heat radiation", J. Fire Sci., 31(2), 166-177. https://doi.org/10.1177/0734904112459264
  33. Harmathy, T. Z. (1972). "A new look at compartment fires, Part I", Fire Technol., 8, 196-217. https://doi.org/10.1007/BF02590544
  34. Heidari, M., Kotsovinos, P. and Rein, G. (2019). "Flame extension and the near field under the ceiling for travelling fires inside large compartments", Fire Mater., 44(3), 421-436.
  35. Heidari, M., Rackauskaite, E., Bonner, M., Christensen, E., Morat, S., Mitchell, H., Kotsovinos, P., Turkowski, P., Wegrzynski, W., Tofilo, P. and Rein, G. (2020). "Fire experiments inside a very large and open-plan compartment: x-TWO", in 11th Int. Conf. Struct. Fire, 479-491.
  36. Hidalgo-Medina, J. P. and Hidalgo, J. P. (2015). Performance-Based Methodology for the Fire Safe Design of Insulation Materials in Energy Efficient Buildings. The University of Edinburgh.
  37. Hidalgo, J. P., Cowlard, A., Abecassis-Empis, C., Maluk, C., Majdalani, A. H., Kahrmann, S., Hilditch, R., Krajcovic, M. and Torero, J. L. (2017). "An experimental study of full-scale open floor plan enclosure fires", Fire Saf. J., 89, 22-40. https://doi.org/10.1016/j.firesaf.2017.02.002
  38. Hidalgo, J. P., Goode, T., Gupta, V., Cowlard, A., AbecassisEmpis, C., Maclean, J., Bartlett, A. I., Maluk, C., Montalva, J. M., Osorio, A. F. and Torero, J. L. (2019). "The Malveira fire test: Full-scale demonstration of fire modes in open-plan compartments", Fire Saf. J., 108 (102827).
  39. Hidalgo, J. P., Maluk, C., Cowlard, A., Abecassis-Empis, C., Krajcovic, M. and Torero, J. L. (2017). "A Thin Skin Calorimeter (TSC) for quantifying irradiation during large-scale fire testing", Int. J. Therm. Sci., 112, 383-394. https://doi.org/10.1016/j.ijthermalsci.2016.10.013
  40. Horova, K., Jana, T. and Wald, F. (2013). "Advances in Engineering Software Temperature heterogeneity during travelling fire on experimental building", Adv. Eng. Softw., 62-63, 119-130. https://doi.org/10.1016/j.advengsoft.2013.05.001
  41. Ingason, H. and Wickstrom, U. (2007). "Measuring incident radiant heat flux using the plate thermometer", Fire Saf. J., 42(2), 161-166. https://doi.org/10.1016/j.firesaf.2006.08.008
  42. Ingberg, S. H. (1928). "Tests of the Severity of Building Fires", Q. Natl. Fire Prot. Assoc., 22, 43-61.
  43. International Organization for Standardization. (1999). "ISO 834-1:1999, Fire-resistance tests -- Elements of building construction -- Part 1: General requirements".
  44. Jahn, W., Rein, G. and Torero, J. L. (2011). "A posteriori modelling of the growth phase Dalmarnock Fire Test One", Build. Environ., 46, 1065-1073. https://doi.org/10.1016/j.buildenv.2010.11.001
  45. Jowsey, A. (2006). Fire Imposed Heat Fluxes for Structural Analysis. The University of Edinburgh.
  46. Jowsey, A., Rein, G., Abecassis-empis, C., Cowlard, A. and Reszka, P. (2007). "An analytical approach to define surface heat fluxes to structural members in post-flashover fires", in Proc. 5th Int. Semin. Fire Explos. Hazards. Edinburgh: The University of Edinburgh, 692-701.
  47. Kawagoe, K. (1958). Fire behaviour in rooms, Rep. Build. Res. Inst.
  48. Khan, A. A., Usmani, A. and Torero, J. L. (2021). "Evolution of fire models for estimating structural fire-resistance", Fire Saf. J., 124, 103367. https://doi.org/10.1016/j.firesaf.2021.103367
  49. Killick, R., Fearnhead, P. and Eckley, I. A. (2012). "Optimal detection of changepoints with a linear computational cost", J. Am. Stat. Assoc., 107(500), 1590-1598. https://doi.org/10.1080/01621459.2012.737745
  50. Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1994). Natural Fires in Large Scale Compartments, A British Steel Technical, Fire Research Station Collaborative Project.
  51. Kirby, B. R., Wainman, D. E., Tomlinson, L. N., Kay, T. R. and Peacock, B. N. (1999). "Natural Fires in Large Scale Compartments", Int. J. Eng. Performance-Based Fire Codes, 1(2), 43-58.
  52. Law, A. and Bisby, L. (2020). "The rise and rise of fire resistance", Fire Saf. J., 116, 103188. https://doi.org/10.1016/j.firesaf.2020.103188
  53. Law, A., Stern-Gottfried, J., Gillie, M. and Rein, G. (2011). "The influence of travelling fires on a concrete frame", Eng. Struct., 33(5), 1635-1642. https://doi.org/10.1016/j.engstruct.2011.01.034
  54. Law, M. (1971). A relationship between fire grading and building design and contents - FRS No. 877, Fire Res. Note.
  55. Law, M. (1983). "Basis for the Design of Fire Protection of Building Structures", Struct. Eng., 61 A(1), 25-33.
  56. Law, M. and O'Brien, T. (1989). Fire safety of bare external structural steel. The Steel Construction Institute.
  57. Lennon, T. (1998). "Large Compartment Fire Tests on a Full-Scale Eight Storey Building", in ASTM Spec. Tech. Publ. 1336, 55-70.
  58. Lennon, T. and Moore, D. (2003). "The natural fire safety concept - Full-scale tests at Cardington", Fire Saf. J., 38(7), 623-643. https://doi.org/10.1016/S0379-7112(03)00028-6
  59. Majdalani, A. H., Cadena, J. E., Cowlard, A., Munoz, F. and Torero, J. L. (2016). "Experimental characterisation of two fully-developed enclosure fire regimes", Fire Saf. J., 79, 10-19. https://doi.org/10.1016/j.firesaf.2015.11.001
  60. Maluk, C., Linnan, B., Wong, A., Hidalgo, J. P., Torero, J. L., Abecassis-Empis, C. and Cowlard, A. (2017). "Energy distribution analysis in full-scale open floor plan enclosure fires", Fire Saf. J., 91, 422-431. https://doi.org/10.1016/j.firesaf.2017.04.004
  61. Masson, L. (2003). The Use of an Instrumented Steel Billet to Measure Incident Heat Flux. MSc Thesis. University of Ulster.
  62. McCaffrey, B. J., Quintiere, J. G. and Harkleroad, M. F. (1981). "Estimating room temperatures and the likelihood of flashover using fire test data correlations", Fire Technol., 17(2), 98-119. https://doi.org/10.1007/BF02479583
  63. Nadjai, A., Alam, N., Charlier, M., Vassart, O., Dai, X., Franssen, J. and Sj. (2020). "Travelling fire in full scale experimental building subjected to open ventilation conditions", in Proc. 11th Int. Conf. Struct. Fire. Brisbane: The University of Queensland, 439-450.
  64. Pchelintsev, A., Hasemi, Y., Wakarnatsu, T. and Yokobayashi, Y. (1997). "Experimental And Numerical Study On The Behaviour Of A Steel Beam Under Ceiling Exposed To A Localized Fire", Fire Saf. Sci., 5(m), 1153-1164. https://doi.org/10.3801/IAFSS.FSS.5-1153
  65. PIT Project: Behaviour of steel framed structures under fire conditions. Main Report. (2000).
  66. Prahl, J. and Emmons, H. W. (1975). "Fire induced flow through an opening", Combust. Flame, 25(C), 369-385. https://doi.org/10.1016/0010-2180(75)90109-1
  67. Rackauskaite, E., Hamel, C., Law, A. and Rein, G. (2015). "Improved Formulation of Travelling Fires and Application to Concrete and Steel Structures", Structures, 3, 250-260. https://doi.org/10.1016/j.istruc.2015.06.001
  68. Rackauskaite, E., Kotsovinos, P., Jeffers, A. and Rein, G. (2017). "Structural analysis of multi-storey steel frames exposed to travelling fires and traditional design fires", Eng. Struct., 150, 271-287. https://doi.org/10.1016/j.engstruct.2017.06.055
  69. Rein, G., Zhang, X., Williams, P., Hume, B., Heise, A., Jowsey, A., Lane, B. and Torero, J. L. (2007). "Multi-Storey Fire Analysis for High-Rise Buildings", in 11th Interflam, 605-616.
  70. Rush, D., Dai, X. and Lange, D. (2020). "Tisova Fire Test - fire behaviours and lessons learnt", Fire Saf. J., 103261.
  71. Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - Part 1 (slab thermal gradients)", Fire Saf. J., 35(2), 99-116. https://doi.org/10.1016/S0379-7112(00)00024-2
  72. Sanad, A. M., Lamont, S., Usmani, A. S. and Rotter, J. M. (2000). "Structural behaviour in fire compartment under different heating regimes - part 2: (slab mean temperatures)", Fire Saf. J., 35(2), 117-130. https://doi.org/10.1016/S0379-7112(00)00025-4
  73. SFPE Engineering Standard on Calculating Fire Exposures to Structures. (2011). Society of Fire Protection Engineers.
  74. Shorter, G. W. (1959). St. Lawrence Burns: general report. Ottowa
  75. Sjostrom, J., Hallberg, E., Kahl, F., Temple, A., Welch, S., Dai, X., Gupta, V., Lange, D. and Hidalgo, J. (2019). Characterization of TRAvelling FIRes in large compartments.
  76. Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part I: Literature review", Fire Saf. J., 54, 74-85. https://doi.org/10.1016/j.firesaf.2012.06.003
  77. Stern-Gottfried, J. and Rein, G. (2012). "Travelling fires for structural design-Part II: Design methodology", Fire Saf. J., 54, 96-112. https://doi.org/10.1016/j.firesaf.2012.06.011
  78. Stern-Gottfried, J., Rein, G., Bisby, L. A. and Torero, J. L. (2010). "Experimental review of the homogeneous temperature assumption in post-flashover compartment fires", Fire Saf. J., 45(4), 249-261. https://doi.org/10.1016/j.firesaf.2010.03.007
  79. The SFPE Task Group on Fire Exposures to Structural Elements. (2004). SFPE Engineering Guide on Fire Exposures to Structural Elements.
  80. Thomas, I., Moinuddin, K. and Bennetts, I. (2005). "Fire development in a deep enclosure", in Proc. 8th Int. Symp. Fire Saf. Sci., 1277-1288.
  81. Thomas, P. H. (1973). "Behavior of fires in enclosures-Some recent progress", Symp. Combust., 14(1), 1007-1020. https://doi.org/10.1016/S0082-0784(73)80091-8
  82. Thomas, P. H., Heselden, A. J. and Law, M. (1967). Fully-developed Compartment Fires: Two Kinds of Behaviour, Fire Res. Tech. Pap. No. 18. H.M. Stationery Office.
  83. Thomas, P. H. and Heselden, A. J. M. (1962). "Behaviour of fully developed fire in an enclosure", Combust. Flame, 6(C), 133-135. https://doi.org/10.1016/0010-2180(62)90081-0
  84. Thomas, P. H. and Heselden, A. J. M. (1972). Fully Developed Fires in Single Compartments.
  85. Torero, J. L. (2013). "Scaling-Up fire", Proc. Combust. Inst., 34(1), 99-124. https://doi.org/10.1016/j.proci.2012.09.007
  86. Torero, J. L. (2016). "Flaming Ignition of Solid Fuels", in SFPE Handb. Fire Prot. Eng. New York: Springer, New York, NY, 633-661.
  87. Torero, J. L., Law, A. and Maluk, C. (2017). "Defining the thermal boundary condition for protective structures in fire", Eng. Struct., 149, 104-112. https://doi.org/10.1016/j.engstruct.2016.11.015
  88. Torero, J. L., Majdalani, A. H., Abecassis-Empis, C. and Cowlard, A. (2014). "Revisiting the compartment fire", in Proc. 11th Int. Symp. Fire Saf. Sci., 28-45.
  89. Usmani, A. S., Rotter, J. M., Lamont, S., Sanad, A. M. and Gillie, M. (2001). "Fundamental principles of structural behaviour under thermal effects", Fire Saf. J., 36(8), 721-744. https://doi.org/10.1016/S0379-7112(01)00037-6
  90. Wakamatsu, T., Hasemi, Y., Kagiya, K. and Kamikawa, D. (2003). "Heating mechanism of unprotected steel beam installed beneath ceiling and exposed to a localized fire: Verification using the real-scale experiment and effects of the smoke layer", Fire Saf. Sci., 1099-1110. https://doi.org/10.3801/IAFSS.FSS.7-1099
  91. Welch, S., Jowsey, A., Deeny, S., Morgan, R. and Torero, J. L. (2007). "BRE large compartment fire tests-Characterising post-flashover fires for model validation", Fire Saf. J., 42(8), 548-567. https://doi.org/10.1016/j.firesaf.2007.04.002