DOI QR코드

DOI QR Code

Revision of 22-year Records of Atmospheric Baseline CO2 in South Korea: Application of the WMO X2019 CO2 Scale and a New Baseline Selection Method (NIMS Filter)

지난 22년간 한반도 이산화탄소 배경농도 재산정 연구 - WMO/GAW 척도 변경과 NIMS 온실가스 배경농도 산출기법을 중심으로 -

  • Received : 2021.09.10
  • Accepted : 2021.11.09
  • Published : 2021.12.31

Abstract

The Korea Meteorological Administration/National Institute of Meteorological Sciences (KMA/NIMS) has monitored atmospheric CO2 at Anmyeondo (AMY) World Meteorological Organization (WMO) Global Atmosphere Watch Programme (GAW) regional station since 1999, and expanded its observations at Jeju Gosan Suwolbong station (JGS) in the South and at Ulleungdo-Dokdo stations in the East (ULD and DOK) since 2012. Due to a recent WMO CO2 scale update and a new filter (NIMS) to select baseline levels at each station, the 22 years of CO2 data are recalculated. After correction for the new CO2 scale, we confirmed that those corrected records are reasonable within the compatibility goal (±0.1 ppm of CO2) between KMA/NIMS and National Oceanic and Atmosphereic Administration (NOAA) flask-air measurements with the new scale. With the new NIMS filter, CO2 baseline levels are now more representative of the large-scale background compared to previous values, which contained large CO2 enhancements. Atmospheric CO2 observed in South Korea is 4 to 8 ppm greater than the global average while the amplitude of seasonal variation is similar (10~13 ppm) to the amplitude averaged over a comparable latitude zone (30°N-60°N). Variations in CO2 growth rate are also similar, increasing and decreasing similar to global values, as it reflects the net balance between terrestrial respiration and photosynthesis. In 2020, atmospheric CO2 continued increasing despite the COVID-19 pandemic. Even though fossil emission was reduced (around -7% globally), we still emitted large amounts of anthropogenic CO2. Overall, since CO2 has large natural variations and its source was derived from not only fossil fuel but also biomass burning, the small fossil emission reduction could not affect the atmospheric level directly.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 이 연구는 기상청 국립기상과학원 『기상정보 활용 및 가치창출 지원연구(KMA2018-00522)』의 지원으로 수행되었습니다. 지난 20년간 안면도, 고산, 울릉도, 독도 관측소의 관측을 도와주셨던 직원 여러분들에게 특별한 감사를 드립니다.

References

  1. Bacastow, R. B., C. D. Keeling, and T. P. Whorf, 1985: Seasonal amplitude increase in atmospheric CO2 concentration at Mauna Loa, Hawaii, 1959~1982. J. Geophys. Res. Atmos., 90, 10529-10540, doi:10.1029/JD090iD06p10529.
  2. Braswell, B. H., D. S. Schimel, E. Linder, and B. Moore, 1997: The response of global terrestrial ecosystems to interannual temperature variability. Science, 278, 870-873, doi:10.1126/ science.278.5339.870.
  3. Canadell, J. G., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci., 104, 18866-18870, doi:10.1073/pnas.0702737104.
  4. Chambers, S. D., and Coauthors, 2016: Towards a universal "Baseline" characterisation of air masses for highand low-altitude observing stations using radon-222. Aerosol Air Qual. Res., 16, 885-899, doi:10.4209/aaqr.2015.06.0391.
  5. Cho, C.-H., J.-S. Kim, and H.-J. Yoo, 2007: Atmospheric carbon dioxide variations at Korea GAW center from 1999 to 2006. J. Korean Meteor. Soc., 43, 359-365.
  6. Czeplak, G., and C. Junge, 1974: Studies of interhemispheric exchange in the troposphere by a diffusion model. Adv. Geophys., 18, 57-72. https://doi.org/10.1016/S0065-2687(08)60571-3
  7. Dlugokencky, E. J., J. W. Mund, A. M. Crotwell, M. J. Crotwell, and K. W. Thoning, 2021: Atmospheric Carbon Dioxide Dry Air Mole Fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968-2020. Version: 2021-07-30, NOAA ESRL Global Monitoring Division [Available online at https://doi.org/10.15138/wkgj-f215].
  8. Fang, S. X., P. P. Tans, M. Steinbacher, L. X. Zhou, and T. Luan, 2015: Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China. Atmos. Meas. Tech., 8, 5301-5313, doi:10.5194/amt-8-5301-2015.
  9. Hall, B. D., A. M. Crotwell, D. R. Kitzis, T. Mefford, B. R. Miller, M. F. Schibig, and P. P. Tans, 2021: Revision of the World Meteorological Organization Global Atmosphere Watch (WMO/GAW) CO2 calibration scale. Atmos. Meas. Tech., 14, 3015-3032, doi:10.5194/amt-14-3015-2021.
  10. Jones, C. D., M. Collins, P. M. Cox, and S. A. Spall, 2001:The carbon cycle response to ENSO: A coupled climate-carbon cycle model study. J. Climate, 14, 4113-4129. https://doi.org/10.1175/1520-0442(2001)014<4113:TCCRTE>2.0.CO;2
  11. JCGM, 2012: International vocabulary of metrology - Basic and general concepts and associated terms (VIM), 3rd edition. 2008 version with minor corrections, Joint Committee for Guides in Metrology, JCGM200:2012, 91 pp [Available online at https://www.bipm.org/utils/common/documents/jcgm/JCGM_200_2012.pdf].
  12. Keeling, C. D., and R. Revelle, 1985: Effects of El Nino/ Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics, 20, 437-450.
  13. Keeling, C. D., T. P. Whorf, M. Wahlen, and J. van der Plicht, 1995: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666-670. https://doi.org/10.1038/375666a0
  14. Kim, J.-S., J.-S. Kug, J.-H. Yoon, and S.-J. Jeong, 2016: Increased atmospheric CO2 growth rate during El Nino driven by reduced terrestrial productivity in the CMIP5 ESMs. J. Climate, 29, 8783-8805, doi:10.1175/JCLI-D-14-00672.1.
  15. KMA, 2021: Report of global atmosphere watch 2020. Korea Meteorological Administration, 411 pp (in Korean).
  16. Lee, H., S.-O. Han, S.-B. Ryoo, J.-S. Lee, and G.-W. Lee, 2019: The measurement of atmospheric CO2 at KMA GAW regional stations, its characteristics, and comparisons with other East Asian sites. Atmos. Chem. Phys., 19, 2149-2163, doi:10.5194/acp-19-2149-2019.
  17. Lee, H., and Coauthors, 2020: Observations of atmospheric 14CO2 at Anmyeondo GAW station, South Korea: implications for fossil fuel CO2 and emission ratios. Atmos. Chem. Phys., 20, 12033-12045, doi:10.5194/acp-20-12033-2020.
  18. Lee, H., J. Lee, B. Hall, E. Dlugokencky, S. Kim, and Y.-H. Kim, 2021: Inter-comparison activities of the WMO/GAW World Calibration Centre for SF6: A strategy for the high precision atmospheric measurements. J. Korean Soc. Atmos. Environ., 37, 512-522, doi:10.5572/KOSAE.2021.37.3.512 (in Korean with English abstract).
  19. Le Quere, C., and Coauthors, 2015: Global carbon budget 2015. Earth Syst. Sci. Data, 7, 349-396, doi:10.5194/essd-7-349-2015.
  20. Le Quere, C., and Coauthors, 2020: Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Change., 10, 647-653, doi:10.1038/s41558-020-0797-x.
  21. Lowe, D. C., P. R. Guenther, and C. D. Keeling, 1979: The concentration of atmospheric carbon dioxide at Baring Head, New Zealand. Tellus, 31, 58-67, doi:10.1111/ j.2153-3490.1979.tb00882.x.
  22. Masarie, K. A., and P. P. Tans, 1995: Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. Atmos., 100, 11593-11610. https://doi.org/10.1029/95JD00859
  23. Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. In T. F. Stocker et al. Eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 659-740.
  24. Pales, J. C., and C. D. Keeling, 1965: The concentration of atmospheric carbon dioxide in Hawaii. J. Geophys. Res., 70, 6053-6076. https://doi.org/10.1029/JZ070i024p06053
  25. Peterson, J. T., W. D. Komhyr, T. B. Harris, and L. S. Waterman, 1982: Atmospheric carbon dioxide measurements at Barrow, Alaska, 1973~1979. Tellus, 34, 166-175, doi:10.1111/j.2153-3490.1982.tb01804.x.
  26. Sirignano, C., R. E. M. Neubert, C. Rodenbeck, and H. A. J. Meijer, 2010: Atmospheric oxygen and carbon dioxide observations from two European coastal stations 2000~2005: continental influence, trend changes and APO climatology. Atmos. Chem. Phys., 10, 1599-1615, doi:10.5194/acp-10-1599-2010.
  27. Sepulveda, E., and Coauthors, 2014: Tropospheric CH4 signals as observed by NDACC FTIR at globally distributed sites and comparison to GAW surface in situ measurements, Atmos. Meas. Tech., 7, 2337-2360, doi:10.5194/amt-7-2337-2014.
  28. Thoning, K. W., P. P. Tans, and W. D. Komhyr, 1989: Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974~1985. J. Geophys. Res. Atmos., 94, 8549-8565, doi:10.1029/JD094iD06p08549.
  29. Rayner, P. J., and R. M. Law, 1999: The interannual variability of the global carbon cycle. Tellus B, 51, 210-212, doi:10.1034/j.1600-0889.1999.t01-1-00007.x.
  30. Yuan, Y., and Coauthors, 2018: Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations. Atmos. Meas. Tech., 11, 1501-1514, doi:10.5194/amt-11-1501-2018.
  31. WDCGG, 2020: WMO WDCGG data summary. WDCGG No. 44, World Data Centre for Greenhouse Gases, 95 pp.
  32. WMO, 2020: 20th WMO/IAEA meeting on carbon dioxide, other greenhouse gases and related measurement techniques (GGMT-2019). GAW Rep. No. 255, World Meteorological Organization, 140 pp.